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Abstract 
 

Environmental managers utilize a variety of tools when assessing lotic systems 

for stressors attributed to anthropogenic sources.  Stream deposited sediment has been 

recognized as one of the major stressors affecting streams in the U.S.  The detrimental 

effect on aquatic biota of sediment depositing within the interstitial spaces of stream 

substrate (embeddedness) has been established, yet lacking is an effective in situ method 

of quantifying embeddedness over short time periods.  The goal of this research was to 

develop a short-term embeddedness (EMB) quantification method that can be linked to 

benthic macroinvertebrate health.  Such a method would be a valuable tool when 

conducting biological and physical habitat assessments of wadeable streams and rivers.  

An in situ embeddedness chamber was developed to capture sediment deposited within 

the interstitial spaces of a uniformly sized substrate.  Using sediment accumulation and 

macroinvertebrate colonization as endpoints, three exposure periods were evaluated (4, 7, 

and 14 days) on a small order stream (Honey Creek, New Carlisle, Ohio, USA) and a 

medium order stream (Stillwater River, Covington, Ohio, USA).  The experiment was 

conducted during low flow conditions with little variation in flow, turbidity, and total 

suspended solids.  Three treatment areas located downstream of the EMB chambers also 

were established to assess benthic macroinvertebrate colonization rates.  Different levels 

of substrate disturbance (disturbed, slightly disturbed, and undisturbed) were mimicked 

by removing the embedded fine sediments.  Embeddedness chamber results show 

correlations between newly deposited fine sediment and insect colonization rates.  



 v

Measured percent embeddedness (USGS method) results at both sites were close to a 

natural stream condition (~33-35% embedded).  Increases in both sediment and insect 

colonization within the EMB chambers during the three sampling periods show that the 

chambers had not reached the embeddedness equilibrium for the stream conditions at that 

time.  Regression analyses run between chamber abiotic and biotic parameters reveal 

interesting correlations showing possible influence of fine sediment fractions on the 

biotic responses.  Treatment area invertebrate results showed higher densities with the 

undisturbed areas indicating the need for a longer study period to assess true colonization 

potential.  Further exploration, calibration, and validation of an effective in situ 

embeddedness quantification method for lotic systems is needed for accurate stream 

assessments. 
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I. Introduction 
 

Background 

It is widely accepted that anthropogenic activities have altered aquatic and 

terrestrial ecosystems.  Challenges such as change in global climate, loss of habitat and 

biodiversity, and inputs of anthropogenic chemicals must be considered in the 

environmental risk assessment process in order to fully characterize each environmental 

issue (Hope, 2006).  The United States Environmental Protection Agency (USEPA) 

defines part of the analysis phase of an ecological risk assessment as the creation of 

summary profiles describing exposure to a stressor(s) and the relationship between the 

stressor and the response to that stressor.  Terrestrial and aquatic organisms typically are 

the receptors that are affected by single or multiple stressors. Therefore, evaluating the 

habitat to which they restrict the bulk of their activities is an important step in 

establishing a stressor-response relationship.  Both suspended and deposited sediments 

have been identified as the major pollutant of US waters; the effect on aquatic organisms 

is well established (Lemly, 1982; Newcombe and MacDonald, 1991; Waters, 1995; 

Wood and Armitage, 1997; USEPA, 2002).  Large amounts of sediment moving through 

lotic systems tend to have effects, both direct and indirect, on aquatic organisms.  Impacts 

of increased sediment input on stream communities, such as reduced light penetration, 

smothering, habitat reduction, and the introduction of absorbed pollutants (pesticides, 

nutrients, and metals), have been clearly documented (Oschwald, 1972; Newcomb and 

MacDonald, 1991; Hynes, 1970).   A vital physical characteristic of aquatic habitats, 

particularly lotic systems, is the degree of substrate embeddedness that occurs as a result 

of fine sediments filling the voids of interstitial spaces in the streambed.  Although 
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alteration of streambed habitat is recognized as one of the most important stressors of 

benthic organisms, the reliability of the findings from the existing embeddedness 

methodologies have been questioned (Sylte and Fischenich, 2002). 
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Research Objectives 

1.  Design a chamber for in situ embeddedness assessment for lotic systems that contains 

a uniformly sized clean substrate and that allows sediment accumulation and subsequent 

embedding of the test substrate.  

 

Hypothesis:  Using sediment weight, porosity, and benthic macroinvertebrate 

colonization as endpoints, an effective and efficient chamber and method can be designed 

to quantify the relationship between embeddedness and colonization. 

 

2.  Compare embeddedness chamber endpoints of sediment dry weight and benthic 

macroinvertebrate colonization to determine the relationship between each endpoint 

within the chambers.  

 

Hypothesis:  There will be an inverse relationship between the amount of sediment in the 

chambers and the number and composition of colonizing macroinvertebrates. 

 

3.  Compare benthic macroinvertebrate colonization of stream substrate between three 

areas which exhibit varying degrees of substrate disturbance. 

 

Hypothesis:  There will be an observable difference among colonization of benthic 

macroinvertebrates in the three substrate treatment areas with the disturbed area (less 

embedded) exhibiting a more diverse assemblage than the undisturbed area (more 

embedded). 
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Methodology 

This research utilized established methods for assessing physical and biological 

parameters within lotic systems in addition to an experimental method that attempts to 

draw relevant correlations.  Previous studies have used various means of assessing 

macroinvertebrate colonization of introduced and natural substrates as well as the effect 

that fine sediment has on macroinvertebrate colonization.  This research employed an in 

situ chamber with an introduced substrate to assess macroinvertebrate colonization and 

sediment accumulation over periods of 4, 7, and 14 days.  Four sediment fractions 

(representing gravel, sand, silt, and clay) were analyzed from sediment that accumulated 

within the interstitial spaces of the chamber substrate.  Furthermore, the porosity of each 

chamber was estimated using the bulk density of the chamber sediments (determined 

through a sequential loss on ignition process).  Three treatment areas within a section of 

the sampling site were modified by removing variable levels of fine sediment and were 

analyzed for macroinvertebrate colonization at 4-Day and 14-Day points.  A 10 day 

sediment toxicity test was conducted, using sediment from each site, to determine if any 

background factors were present that could alter macroinvertebrate colonization (i.e., 

sediment toxicity). A thorough characterization of the substrate at each site, including 

percent embedded substrate size fraction, was conducted to better understand the site 

characteristics. 

Assumptions/Limitations 

Due to the brief window for field studies and subsequent sample processing, 

relatively short exposures were used to evaluate the in situ embeddedness chamber.  

Desired exposure times for benthic macroinvertebrate colonization tend to span at least 5 
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weeks (Roby et al., 1978; Shaw and Minshall, 1980; Lamberti and Resh, 1985).  Even so, 

one colonization study with an introduced substrate showed stabilization of colonizing 

macroinvertebrates between 9 and 14 days (Wise and Molles, 1979).  The rapid 

accumulation of sediment in the embeddedness chambers during the pilot study provided 

confidence for evaluating the in situ embeddedness chambers and treatment areas after 

short exposures.  A major assumption was that stream conditions would be relatively 

stable (i.e., low flow) and during such short exposure periods, thus minimizing 

confounding by any major environmental variables.  

 

Implications 

The development of an in situ embeddedness assessment technique would be a 

valuable stream assessment tool when conducting biological and physical habitat 

assessments of wadeable streams and rivers.  Accurately assessing the in situ conditions 

that lead to embeddedness and the degradation of benthic macroinvertebrate habitat 

would be an improvement to the current methods of merely quantifying the percent 

embeddedness of a particular reach at one point in time.  An in situ embeddedness 

assessment technique could provide an improved means of quantifying embeddedness 

that is quicker and yields less variance than the current subjective methods.  Such an in 

situ technique would also provide a means of linking exposure effects more effectively. 
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II. Literature Review 
 
 

Habitat Assessments and the Ecological Risk Assessment Process 

The use of habitat assessments in the ecological risk assessment process provides 

a means of differentiating habitat changes resulting from physical, chemical, and 

biological factors (Rand and Newman, 1998).  Habitat assessment methods are a 

structured, logical, and systematic approach for determining habitat alterations because 

they consider important life requirements and environmental variables crucial to 

organisms (Rand and Newman, 1998).   There are a wide variety of habitat assessments 

that serve as important tools during all phases of an ecological risk assessment.  Common 

habitat assessments include the USEPA Rapid Bioassessment Protocol (RBP) and the 

Ohio Environmental Protection Agency (OEPA) Qualitative Habitat Evaluation Index 

(QHEI).  Rand and Newman (1998) conducted a review of the aforementioned 

assessments that discussed their applicability to ecological risk assessments:  in the 

problem formulation phase, habitat assessments can be used to identify potential habitats 

that are at risk and subsequently used to determine assessment endpoints; in the analysis 

phase, they can be used to define exposure in habitats and to identify dose-response 

relationships.  Moreover, in the risk characterization phase, habitat assessments can be 

used to emphasize the importance of habitats at risk.  Finally, in the risk management 

phase, they can be used to define habitat management actions (Rand and Newman, 1998). 

Habitat assessments are not without criticism. The qualitative nature of most methods has 

been questioned due to deficient study design and to the poor reproducibility of surveys 

due to variation among observers (Bauer and Ralph, 2001; Roper and Scarnecchia, 1995).  
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Conversely, Wang et al. (1996) reported that little variation existed among trained 

observers for most physical habitat variables.  Wang et al. (1996) noted that if adequate 

initial training was conducted the experience of observers had little effect on the accuracy 

and precision of habitat estimates.   However, the Wang et al. study (1996) cautioned 

that, aside from most other observed habitat variables, there was a high degree of 

variation among trained observers when estimating gravel embeddedness.  Further, Bauer 

and Ralph (2001) emphasized the need for developing systematic procedures that meet 

rigorous data quality objectives.  Bauer and Ralph pointed out that identical habitat 

indicators can be both quantitatively and qualitatively assessed and that information 

derived from these methods are not readily comparable. 

 Although arguments on both sides of the issue are valid, performing a habitat 

assessment is still a fundamental part of establishing the stressor-response relationship for 

use in an ecological risk assessment.   

 

Sediment in Streams 

In a recent USEPA (2006) report, approximately 25% of the nations’ streams 

(167,092 miles) are in poor condition in terms of streambed sediment compared to a 

regional reference condition.  Excessive sediments are ranked as the fourth highest 

stressor out of eight major stressors identified nationwide.  Sediment becomes a stressor 

when excess inputs occur within a system as well as when normal levels of sediment 

become vectors of exposure to pollutant contamination.  Along with geology, 

geomorphology, and vegetation, sediment input is a vital factor to consider when 
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assessing a watershed or aquatic system (Allan et al., 1997).  Sediment inputs are an 

important factor to consider when assessing a watershed or aquatic system along with 

geology, geomorphology, and vegetation (Allan et al., 1997; Polf and Huryn, 1998; 

Church, 2002). Actions such as land disturbances and removal of native vegetation 

increase sediment delivery rates in contrast to the natural, dynamic processes in 

watersheds (Waters, 1995; Jones et al., 2001).  Impacts on stream ecosystems from large-

scale agricultural operations have been well documented, and, in most cases, have been 

linked to declining water quality and increasing sediment loading (Waters, 1995; Johnson 

et al., 1997; Walser and Bart, 1999).   

Certain land use practices, such as converting land to pasture, greatly increase the 

input of sediment directly onto certain substrate forms and the filling of interstitial 

spaces.  One such substrate form is natural lateral gravel bars which tend to be inhabited 

by invertebrates whose patterns of distribution correlate strongly with water chemistry 

and surface/subsurface exchange (Boulton and Stanley, 1995).  Important reactions 

between epi-benthic habitat and chemical and microbial processes occur within the 

hyporheos and can have substantial ramifications for surface biota (Boulton, 1993; 

Stanford and Ward, 1993; Findlay, 1995).  As with any assessment of stressors within a 

system, a more holistic approach is required for a reliable interpretation.  Elevated fine 

sediment loadings have different effects on hyporheic exchange and associated ecological 

processes depending on local hydrologic and geomorphic conditions (Brunke and 

Gonser, 1997; Rehg et al., 2005).  Excess sediment within a lotic system has the potential 

to have detrimental effects on large-scale ecosystem functions that may be strongly 

influenced by hyporheic (subsurface) exchange processes.  Hyporheic exchange strongly 
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influences the larger-scale transport of solutes and fine particulate matter to include 

nutrients, contaminants, dissolved organic carbon, and particulate organic carbon 

(Findlay, 1995; Brunke & Gonser, 1997; Mulholland et al., 1997; Winter et al., 1998; 

Jones & Mulholland, 2000; Minshall et al., 2000).  

 Studies have shown that hyporheic exchange is an important component of both 

good quality habitat for aquatic invertebrates and for fish spawning (Ward et al.,, 1998; 

Baxter & Hauer, 2000) and that deposition of fine sediment into streambeds can greatly 

reduce hyporheic exchange (Packman & Mackay, 2003).  Changes occurring within the 

hyporheic zone as a result of increased fine particulate deposition may include altered 

hydraulic conductivity and bulk porosity (Packman & Mackay, 2003; Rehg et al., 2005).  

The clogging of the interstitial spaces with depositing fine particulates not only effects 

physical properties such as decreasing available habitat for biota, it also prevents the 

down-welling of oxygen-rich surface water and promotes the development of large 

hypoxic or anoxic zones that are further undesirable to hyporheic invertebrates (Boulton 

et al., 1997).  Studies have identified the relationship between large amounts of fine 

interstitial sediments and low hyporheic dissolved oxygen (Poole & Stewart, 1976; 

Strommer and Smock, 1989; Bretschko, 1994) and particles <1 mm in diameter are 

known to reduce the availability of dissolved in stream gravels (Tagart, 1984). 

One of the major issues with sediments and fine particulates that have embedded 

within the interstices is the persistence of such conditions.  Particles becoming trapped 

within the interstices of a streambed is an irreversible condition under steady streamflow 

conditions (Packman et al., 2000), yet clay particles are readily remobilized due to 

increased shear stress when bed sediment transport occurs (Packman and Brooks, 2001).  
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Fine sediment accumulates primarily below the region of active bed sediment transport 

and this depth varies depending on the degree of mobilization of the bed (Rehn et al., 

2005).  Streams with either continuous bed sediment transport or frequent episodic 

transport events relative to the input of fine sediments exhibit little fine sediment 

accumulation in the uppermost layers of the streambed, but there will still be 

accumulation at some depth in the bed (Rehn et al., 2005).  In streams experiencing 

episodic sediment transport events, seepage of fines into the deeper interstitial spaces 

occurring during inter-flood periods can further reduce permeability and dissolved 

oxygen (Boulton et al., 1997).  The periods of dynamic equilibrium with regard to 

discharge and flow may see reduced sediment loads, although previous deposition of 

fines can continue to be a stressor.  The reduction of flushing flows to remove interstitial 

silt and clay has been shown to lead to low hyporheic dissolved oxygen concentrations 

and reduced colonization by surface benthos (Boulton et al., 1997; Brunke and Gonser, 

1997).   

A recirculating flume study conducted by Rehg et al. (2005) showed clay 

concentrations within the water column reaching nearly zero after only 55 hours due to 

stream-subsurface exchange, settling, and filtration within the interstitial spaces of a 

homogenous sand bed.  Their results, showing a lack of significant subsurface exchange, 

indicated that clay deposition in the uppermost layer of the substrate was quite effective 

in preventing water exchange through the substrate (Rehg et al., 2005).  Another study 

using an in situ flume evaluated the critical threshold required for entraining fine 

material.  Results from this study indicated that loss of fine material within the substrate 

at a critical flow threshold caused larger substrate particles to shake and this caused an 
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increase in macroinvertebrate drift (Gibbons et al., 2007).  Though this study was not 

evaluating the direct effect of fine sediment on the biota, it did reinforce the idea that the 

relationship between fine sediment and biota within a system can be complex.   

 

Physicochemical attributes associated with stream sediment pose 

multidimensional avenues of stress to aquatic environments.  In streams experiencing 

contamination, fine colloidal particles have the potential to carry a large pollutant load 

(Axtmann and Luoma, 1991; Kimball et al., 1995; Harvey and Fuller, 1998; Ren and 

Packman, 2002).  Both suspended and deposited sediments have the potential to impair a 

system and have both direct and indirect negative effects on aquatic organisms.  Some of 

these negative effects will be covered in the section devoted to biotic implications of 

excess sediment in the aquatic environment.   

 

   Previous Studies on Fine Sediment and Biota 

There have been numerous studies (Lenat et al., 1981; Richards and Bacon, 1994; 

Angradi, 1999; Runde and Hellenthal:, 2000; Rabeni et al., 2005; Gibbons et al., 2007; 

Bo et al., 2007) employing a variety of methods that have evaluated the effects of fine 

sediment on aquatic biota.  Research has shown the usefulness of recirculating flumes in 

understanding the variation of stream-subsurface exchange rates and obtaining results 

applicable to natural streams (Elliott and Brooks, 1997; Packman et al., 2000; Ren and 

Packman, 2002; Wörman et al., 2002).  Packman et al. (2000) found that clay particles 

can be almost completely removed from suspension within a flume because particle 

trapping in the substrate becomes essentially irreversible under steady flow conditions.    
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Several field studies have been conducted to assess the relationship between fine 

sediment inputs and aquatic macroinvertebrates (i.e., Bjorn et al., 1977; Wesch et al., 

1989; Richards and Bacon, 1994; Runde and Hellenthal, 2000; Kaller and Hartman, 

2004; Bo et al., 2007).  A number of approaches have had similar results showing a 

negative correlation between fine sediment and macroinvertebrate densities.  Richards 

and Bacon (1994) used small basket samplers called Whitlock Vibert (WV) boxes to 

assess the effect of varying levels of fine sediment substrate on macroinvertebrate 

colonization within uniformly size gravel.  Their design used two WV box positions 

within the stream substrate (flush with the surrounding substrate surface and buried ~30 

cm below the substrate surface).  After a 10 wk exposure, their results showed a larger 

amount of fine sediment accumulation in the below-surface boxes than in the surface 

boxes (Richards and Bacon, 1994).  Their experiments with fine sediment accumulation 

and macroinvertebrate colonization indicated that fine sediment abundance did have 

distinct effects on macroinvertebrate colonization within the hyporheos (Richards and 

Bacon, 1994). 

 

These results reinforce the theory that deposited fine sediments within a 

streambed will infiltrate fairly deep within a substrate in the absence of flushing stream 

flows.  A recent study (Bo et al., 2007) in northwest Italy used an approach to that of 

Richards and Bacon (1994) using sediment accumulation traps filled with varying 

mixtures of gravel and sand substrate.  The intent of this study was to assess how fine 

sediment accumulation can influence the colonization process and community 

composition of macroinvertebrates (Bo et al, 2007).  The traps were randomly placed in a 
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riffle habitat with the apex of the traps flush with the surrounding substrate. Forty eight 

traps were used during two sampling periods (20 & 40 days) to evaluate the 

macroinvertebrate colonization of selected traps.  Results showed significant differences 

in number of taxa and decreases in abundance with increased substrate clogging.  

 

Biotic Implications of Increased Sediment Input 

Changes in macroinvertebrate assemblages have been routinely used in assessing 

habitat and other facets of lotic systems in part because they exhibit consistent long-term 

changes to watershed activities that influence substrate characteristics (Richards and 

Minshall, 1992).  Aquatic macroinvertebrates and vertebrates are exposed to a multitude 

of stressors that can have synergistic effects and cause considerable impairment.  

Contaminant exposure, excess nutrients, and excess sediment plague the biota of many 

aquatic systems throughout the U. S.  As covered in a previous section, excess stream 

sediment has been recognized as a major stream stressor with both physical and chemical 

impacts.  Distribution of benthic macroinvertebrates is influenced in part by the amount 

of fine sediment within the substrate.  Effects of excess fine sediment on stream 

macroinvertebrates can range from small changes in abundance or assemblage structure 

to the complete replacement of a cobble/gravel habitat-adapted assemblage by a sand 

habitat-adapted assemblage (Lenat et al., 1979, Lenat et al., 1981).  The results of 

numerous studies suggest that substrate size and composition determine the distribution 

of benthic taxa (Minshall, 1984) and those substrates composed of smaller particles 

exhibit lower numbers of taxa and lower productivity (Nuttall, 1972; Cederholn and 

Lestelle, 1974; Allan, 1975; Ward, 1975; Alexander and Hansen, 1986). 
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Decreases in substrate heterogeneity also tend to decrease richness of benthic 

invertebrates (Vinson and Hawkins, 1998).  An early study by Bjorn et al. (1977) found 

macroinvertebrate densities to be greater in riffles with low amounts of fine sediment 

than riffles with higher proportions of fines.  Exposure to sustained suspended sediment 

loads tend to clog feeding structures and reduce feeding efficiency of filter feeding 

macroinvertebrates (Hynes, 1970).  Increases in suspended sediment loads have also been 

shown to decrease algal productivity which can have a detrimental effect on secondary 

productivity (Newcomb and MacDonald, 1991).  Kaufmann and Hughes (2006) found 

that streambed instability and an increase in fine particle inputs associated with riparian 

disturbance and road construction were highly correlated with low abundance and 

richness of salmonids, tailed frogs, and other coldwater and sediment intolerant taxa. 

Uneven distribution of benthic macroinvertebrates within the substrate results 

from a variety of physical and chemical factors.  Maridet et al. (1992) suggested that 

effective porosity of stream substrate is the primary factor determining the vertical 

distribution of invertebrates.  Substrate size can influence the velocity within the 

substrate and also provides interstitial space for a variety of benthic dwelling organisms 

to inhabit (Maridet and Philippe, 1995; Lazorchak, 1998).    

 

Embeddedness 

A vital physical characteristic of aquatic habitats, particularly lotic systems, is the 

degree of substrate embeddedness that occurs as a result of fine sediments filling in the 

interstitial spaces in the streambed.  Although alteration of streambed habitat is 

recognized as one of the most important stressors for benthic organisms, the reliability of 
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the outcomes from the varying methodologies for measuring embeddedness has been 

questioned (Sylte and Fischenich, 2002).  Misconceptions exist about the term 

embeddedness which has led to inaccurate portrayals of embeddedness and the physical 

factors it describes.  Two of these common misconceptions are embeddedness as a direct 

measure of the volume of fine sediment and as a measure of substrate mobility (Sylte and 

Fischenich, 2002).    

Researchers have formulated a multitude of definitions for embeddedness.  Sylte 

and Fischenich (2002) listed a number of these definitions in their review of techniques 

for measuring embeddedness.  Their summary of the definition of embeddedness seems 

adequate: the degree to which larger substrate particles are covered with finer particles.  

This definition uses a length term which represents a volume of fines surrounding coarser 

substrates, and is placed in relative proportion to rock height in the plane of 

embeddedness (Figure 1) (Sylte & Fischenich, 2002). 

 

 

Figure 1.  Schematic Representation of Embeddedness (Sylte and Fischenich, 2002) 
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Similarly, Whitman et al. (2003) defined stream embeddedness as a description of the 

extent to which fines the size of sand or smaller (≤2mm) fill the interstices between larger 

streambed particles. 

A theme in many of the embeddedness definitions is the description of the filling 

of voids or spaces around larger substrate particles (commonly referred to as interstitial 

spaces) by smaller particles (referred to as fines).  This interstitial space is a vital 

characteristic in the suitability of stream substrates for supporting aquatic organisms.  

Benthic invertebrates are often used in monitoring sediment conditions in streams 

because substrate (and interstitial space) is believed to be the most important factor in 

benthic invertebrate distribution and abundance (Cummins and Lauff, 1968; Minshall, 

1984; Quinn and Hickey, 1990).  Rabeni et al. (2005) appropriately identified benthic 

invertebrates as potential receptors in a watercourse that is experiencing sedimentation 

due to the influence of deposited sediment on stream substrate conditions.  The results of 

many studies (Lemly, 1982; Zweig and Rabeni, 2001; Rabeni et al., 2005) have shown 

that increasing levels of deposited sediment have resulted in a decrease in invertebrate 

density and tax richness, both of which are used as metrics to deposited sediment.   

Waters (1995) presents a dramatic example of the effect of deposited sediment on 

organisms:  A gravel washing operation in the Truckee River in California experienced a 

90 % reduction in bottom fauna densities and biomass after up to a foot of fine sediment 

was deposited on the river bottom.  

The United States Geological Survey (USGS) official definition of sedimentation 

is the act or process of forming or accumulating sediment in layers; the process of 

deposition of sediment (Fitzpatrick, 1998).  This definition describes the process of 
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sediments accumulating but does not imply that the process includes the filling of 

interstitial spaces.  Waters (1995) concedes that measuring the degree of streambed 

sedimentation is difficult in terms that have biological meaning.  Waters (1995) also 

suggests possible terms that break sedimentation into aspects, such as area of streambed 

covered, depth of coverage, percent of defined fine, and percent saturation of interstitial 

space or embeddedness. 

Measures of embeddedness need to be clearly separated from other sediment 

related factors in order for specific physical properties to be identified in stressor-

response relationships.  The USEPA’s RBP differentiates between sediment deposition 

and embeddedness: embeddedness being the extent to which rocks and snags are covered 

or sunken into the silt, sand, or mud of a stream bottom; and sediment deposition, being 

the amount of sediment that has accumulated in pools as a result of large-scale movement 

of sediment (Barbour, et al.,1999).  The results of studies by Bjorn et al. (1974, 1977) 

concluded that a 33 % or less level of embeddedness is probably the normal operating 

range in proper functioning streams.  Waters (1995) pointed out that Bjorn et al.’s (1977) 

conclusions showed that, at embeddedness levels greater than 33 %, insect abundance 

decreased by about 50 % and mayflies and stonefly numbers increased dramatically once 

the study section of stream was cleared of fine sediment. 

 

Methods for Quantifying Embeddedness 

Increases in deposited sediment and subsequent embeddedness of substrate have a 

negative effect on most benthic invertebrates.  However, there is much contention about 
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actual methods of measuring substrate embeddedness.  This section will summarize some 

common methods of quantifying substrate embeddedness and will comment on published 

limitations and requirements for further study. 

 

There are a few methods of measuring embeddedness (Platts et al., 1983; Burns, 

1984; Plafkin et al., 1989; Skille and King, 1989; Fitzpatrick, 1998; Osmundson and 

Scheer, 1998; Bain and Stevenson, 1999), but there is no comprehensive standard that 

actually describes embeddedness and how to quantify it.  Sylte and Fischenich (2002) 

reviewed the most common methods of embeddedness measurement techniques compiled 

from journal articles, agency reports, and personal files of those involved in the 

development of the techniques.  Some of the methods are simply refinements of earlier 

methods.  The majority of the published works are for use in wadeable streams or rivers.  

In addition, Edsall et al. (1997) describes some alternative techniques for surveying the 

physical habitat of large rivers.   

Platts/Bain Method. 

The Platts/Bain method was developed from two studies, one by Platts et al. 

(1983) and the other by Bain and Stevenson (1999).  According to the Platts/Bain 

method, embeddedness measures in terms of surface area the degree to which larger 

particles are surrounded or covered by fine sediment.  Descriptions such as negligible, 

low, moderate, high, and very high are designated by researchers as ratings in five or 

more representative habitats at midstream locations. This method is a very subjective 

substrate embeddedness technique that has the potential to show a wide range of results 

among different observers.  
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Burns Method.  

The Burns method (unpublished data) was described in a 1984 study examining of 

embeddedness of salmonid habitat in Idaho.  The method used embeddedness levels to 

refer to the proportion of an individual particle surrounded by fine sediment.  Substrate 

particles considered were 4.5 cm to 30 cm and fines were defined as particles less than 

6.3 mm in diameter.   The proportion of particle surrounded by fine sediment was 

calculated by dividing the embedded depth by the total depth of rock that lies 

perpendicular to the plane of embeddedness (Figure 1) (Burns and Edward, 1985).  This 

method treated an embeddedness measurement made for one rock as one observation.  

Moreover, it employed a 60 cm steel hoop to delineate the area of the substrate to be 

examined (making at least 100 observations).  Then, particles within the sampling hoop 

were measured for dimensions using a 30 cm transparent ruler.  Requirements for 

particular stream velocities (float time across the hoop) and stream depth were sought to 

determine suitable winter cover for over-wintering salmonids (Sylte and Fischenich, 

2002).   

 

BSK Method. 

Developed by Skille and King (1989), the method is a modified version of the 

Burns method.   It is essentially the same procedure as the Burns method except that the 

BSK method does not focus hoop placement on specific substrates.  The BSK method 

allows for a randomized sampling technique that provides data that representing the 

entire stream reach.  
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United States Fish & Wildlife Service-Upper Colorado River Measurement 
Method. 

 

This Upper Colorado River Measurement Method of the United States Fish & 

Wildlife Service (USFW) quantifies embeddedness by measuring the amount of particle 

exposed or depth to embeddedness (DTE) rather than the percent embedded 

measurements utilized by the other methods (Sylte and Fischenich, 2002).  Twenty 

measurements that include one run and one riffle are taken at 15 sites.  This technique 

consists of laying one hand on the substrate particle surface layer while holding the other 

hand perpendicular to the first, then extending the fingers down between the thumb and 

forefinger of the first hand until the tip of the index finger reaches the top of the layer of 

embeddedness (Osmundson and Scheer, 1998).   These embeddedness measurements are 

then averaged to represent the site.   An interesting aspect of this method is that it takes 

into account the number of rocks above the embeddedness line.  Sylte and Fischenich 

(2002) note that this method is better for assessing a specific site over time rather than 

drawing conclusions between sites because of the dependence of depth to embeddedness 

on substrate particle distribution.   

 

USEPA Environmental Monitoring and Assessment Program (EMAP) 
Method. 

 
The USEPA RBP (1999) states that embeddedness observations should be taken 

upstream and within central portions of riffles and cobble substrate areas in order to avoid 

confusion with sediment deposition.  The EPA’s EMAP method for determining substrate 

embeddedness is derived from a combination of methods adapted from Wolman (1954), 
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Bain et al. (1985), Platts et al. (1983), and Plafkin et al. (1989).  A cross-section is 

defined by laying a surveyors rod or tape to span the wetted channel.   For this method, 

five substrate particles (those larger than sand) from each of 11 transects are evaluated for 

surface stains, markings, and algae.  The average percent embeddedness of the particles 

within a 10 cm diameter of the measuring rod is recorded.  As a result of this method, 

embeddedness therefore is classified as the fraction of the particle’s surface that is 

surrounded by (embedded in) fine sediments on the stream bottom.  Substrate particle 

sizes are visually estimated and classified into categories according to the Wentworth 

Scale.  As a reference, the method defines sands and fines being embedded 100 % and 

bedrock and hardpan being embedded 0 %.   Since it is strictly a visual method, this 

approach is very subjective    

 

USGS National Water Quality Assessment Program Method. 

As described in the USGS (1998) substrate particle size is measured and percent 

embeddedness is estimated.   This method characterizes stream substrate utilizing the 

Wolman (1954) pebble count method for courser particles and a laboratory analysis for 

sand or finer material.  These quantitative measurements are particularly useful for 

analyzing fish and invertebrate habitats (Fitzpatrick et al., 1998).  Substrate 

embeddedness is determined much like the USEPA (1998) EMAP method, estimating to 

the nearest 10 %, the percentage of the surface area of gravel or larger particles that is 

covered by sand or fines.   To minimize subjectivity, this method recommends the use of 

a graded ruler or calipers to measure the height of the embedding mark (Figure 2) on the 

substrate particle as a percentage of the total height of the particle.   
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Figure 2.  Embedded Substrate Particle from Honey Creek. 
 

 

Additional Embeddedness Measurement Techniques. 

Whitman et al. (2003) developed photographic techniques to characterize coarse 

(>2 mm) and fine (<2 mm) substrate particle sizes and compared their results with other 

sampling techniques such as Platts et al. (1983) and the Wolman (1954) pebble count. 

The method provides a quantitative result of embeddedness through digitizing surface 
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fines and evaluating the photographs.  The photographic techniques developed yielded a 

greater number of particles measured compared to the Wolman pebble count.  

Interestingly, the results of embeddedness indices from field and photographic 

observations had significant variation in five out of the twelve sampling reaches 

(Whitman et al., 2003).   This method does have limitations such as camera cost and film 

processing logistics. Wang et al. (1996) reported that photographic techniques for 

analyzing substrates is limited to clear shallow areas and takes considerably longer to 

perform overall than visual techniques.  If time is not a factor, digital photography seems 

like an obvious choice when experimenting with photographic techniques for determining 

embeddedness.     

Freeze core sampling is a technique that has been used to obtain streambed 

samples for analysis.  Rood and Church (1994) used a McNeil-freeze core apparatus to 

collect samples of alluvial gravel in Alaska.  This method involved two individuals 

working a core barrel 30 cm into the substrate.  Subsequently, a freeze core probe using 

liquid nitrogen was utilized to deliver extremely cold temperatures to the substrate 

sample.  Once the core was frozen, it was removed for substrate analysis. Some 

drawbacks of this technique include the material costs involved and the inadequacy of the 

core samples to characterize the complete grain size in cobble/gravel bed rivers (Rood 

and Church, 1994).      

 

  Although the existing methodologies for determining substrate embeddedness 

have some similarities, the different qualitative and quantitative results make it difficult 

to compare data among different studies using various methods.  Recently, the USEPA 
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(2006) finalized a report of a two year wadeable streams assessment that was conducted 

across the entire U.S.  This research was initiated, in part, from a 2000 report from the 

General Accounting Office (GAO) that noted the EPA and the states were unable to make 

statistically valid inferences about water quality.  Moreover, this GAO report claimed that 

insufficient data existed to support management decisions (USEPA, 2006).  A portion of 

this study included comparisons of the different sampling protocols applied by the 

EMAP, USGS, and state agency methods; a current analysis is underway to explore how 

new data can be used (USEPA, 2006).  A nationally standardized methodology for 

determining embeddedness would serve as a valuable tool in quantifying such a critical 

physicochemical stressor on aquatic organisms. 

   Habitat assessments have been primarily used as management tools to evaluate 

the impacts of development because they allow comparisons of different habitats and 

habitat characteristics of various areas at the same point in time and the same area at 

future points in time (Rand and Newman, 1998).  Refining habitat evaluations such as 

stream substrate embeddedness techniques are essential in all phases of the ecological 

risk assessment process.  Even so, further exploration and enhancement of standard 

techniques are imperative.  Existing methods for determining substrate embeddedness 

were developed to capture a point in time estimate.  What has not been addressed in the 

literature is the development of a method to determine embeddedness on an event basis. 

Developing a method to determine embeddedness on an event basis would be useful in 

ascertaining the magnitude of a stressor per event.  Additional research adapting 

embeddedness quantification techniques to in situ toxicity testing techniques may provide 

valuable insights in linking physical stressors to effects on receptors.   
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III. Methodology 

Test Sites 

Test sites were selected after reviewing several previous biological and water 

quality assessments (OEPA, 1996 and 2001).  Sites that exhibited a fairly high degree of 

water quality and a diverse macroinvertebrate assemblage were selected.  This research 

intended to assess two different stream orders to evaluate the magnitude of physical and 

biological differences that have been described in the River Continuum Concept 

(Vannote et al., 1980). 

Honey Creek. 

Honey Creek, Clark County, Ohio (latitude and longitude N 39° 58’ 17.8”/W 

084° 08’ 07.5”) (Figure 3) was chosen as a small order stream site for this research 

because of its high water quality, and diverse macroinvertebrate community.  With 

headwaters located in Champaign County, Honey Creek flows south through Clark 

County and eventually into Miami County, where it ends at its confluence with the Great 

Miami River.  Honey Creek drains an area approximately 91.6 square miles and is 18.6 

miles long with an average gradient of 19.6 ft/mile (OEPA, 1996).  Honey Creek exhibits 

many positive physical habitat attributes such as an abundance of functional in-stream 

cover, coarse glacial substrates, pooled areas greater than 40 centimeters in depth, and a 

persistent wooded riparian corridor (OEPA, 1996).  The upper reaches of the creek have 

been designated as Exceptional Warmwater Habitat (EWH) by the Ohio Environmental 

Protection Agency (OAC).  A biological and water quality study conducted of the Upper 

Great Miami River in 1995, which included Honey Creek, inferred that mild organic 

enrichment from the New Carlisle Wastewater Treatment Plant (WWTP) was likely a 
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contributing factor to the middle and lower reaches of Honey Creek not meeting the 

EWH criteria.  A Qualitative Habitat Evaluation Index conducted as part of the 1995 

OEPA study found Honey Creek having a mean reach QHEI value of 74.3, which 

suggested that the near in-stream habitats were sufficient to support a community of 

aquatic organisms consistent with EWH biological criteria (Rankin, 1989). 

The section of the creek where the embeddedness study was conducted was 

located approximately 370 meters upstream of the location where State Route 202 crosses 

over Honey Creek.  During the 1995 biological and water quality study, the 

macroinvertebrate community in this section of Honey Creek (downstream of RM 3.2) 

was similar to that of the upper section of the creek (upstream of the New Carlisle 

WWTP RM 10), with Invertebrate Community Index (ICI) scores of 44 and 40, 

respectively.  In addition, the section of Honey Creek where the embeddedness study was 

conducted exhibited an EPT taxa richness of 25 (OEPA, 1996).  For the EMB study, the 

aquatic macroinvertebrate community was sampled (using a D-Frame dip net) once on 

September 28, 2007, according to the USEPA RBP multi-habitat approach (Barbour et 

al., 1999).  The sampling sites for the EMB chambers and the treatment areas were 

located in a run approximately 0.5 meters downstream of a small riffle area.  The riparian 

area along the test site was stable with many hardwood trees and low lying shrubs along 

the banks of the river.  The river substrate consisted mainly of cobbles and boulders with 

sand and pebbles mixed throughout.  Stream depth at the sampling site averaged 

approximately 0.25 meters.   
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Figure 3.  Map of both study sites and land use in the Great and Little Miami River 
Basins, Southwest Ohio.  Honey Creek (Clark County) was the small order stream 
site and the Stillwater River (Miami County) was the medium order stream site. 
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Stillwater River. 

The Stillwater River, Miami County, Ohio (latitude and longitude N 40° 05’ 

54.1”/W 084° 21’ 16.0”)  (Figure 3) was chosen as a site for this research because it also 

exhibits high water quality and a diverse macroinvertebrate community.  Relative to the 

Honey Creek test site, the Stillwater River serves as a larger stream order site.  The 

Stillwater River is designated as EWH from RM 57 to its confluence with the Great 

Miami River just north of Dayton (OEPA, 2001).  The Stillwater’s headwaters are 

located in eastern Indiana and the northern part of Darke County; it flows east through 

Darke County into Miami County.  The river then flows south through Miami County 

into Montgomery County until it intersects the Great Miami River.  The Stillwater River 

is 67.2 miles in length and its watershed covers approximately 673 square miles with an 

average gradient of 4.2 feet per mile (OEPA, 2001).  The primary land uses within the 

watershed are agriculture (80%), pasture, woodland, and urban (totaling ~11%), with 

light manufacturing in some areas.  There are roughly 25 point source facilities 

contributing pollution within the watershed; the larger sources are the WWTPs spread 

throughout the watershed (OEPA, 2001).  Use designations for the Stillwater River are 

Industrial Water Supply, Agricultural Water Supply, Primary Contact for Recreation, and 

Public Water Supply at RM 18 (OEPA, 2001).  No sediment bioassay toxicity was 

detected downstream of the Covington WWTP; its effluent was identified as having no 

receiving water impairment (OEPA, 2001). 

The sampling site for this EMB study was located at ~RM 30, approximately 200 

m upstream from the Faulknor Road Bridge.  This section of the river exhibited the 

highest Composited Index Scores during a 2001 study and relatively high scores during 
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previous studies conducted in 1990 and 1982 (OEPA, 2001:).  For the EMB study, the 

aquatic macroinvertebrate community was sampled using a D-Frame dip net once on 28-

September-07, according to the USEPA RBP multi-habitat approach (Barbour et al., 

1999).  The sampling sites for the EMB chambers and the treatment areas were located in 

a run approximately 2-3 meters downstream of a riffle area.  Comparable to the Honey 

Creek zone, the riparian area along the test site was stable with many hardwood trees and 

low lying shrubs along the banks of the river.  The river substrate consisted mainly of 

cobbles and boulders with sand and pebbles mixed throughout.  Stream depth at the 

sampling site averaged approximately 0.5 meters.   

 

Experimental Design 
 

Embeddedness chambers were placed at the head of a run habitat that exhibited 

adequate flow.  Immediately downstream of the chambers, three substrate treatment areas 

were established in a run habitat.  These treatment areas were established to assess 

benthic macroinvertebrate colonization rates by mimicking different levels of substrate 

disturbance (disturbed, slightly disturbed, and undisturbed) by removing the embedded 

fine sediments.  A random sampling scheme was developed to sample both the 

embeddedness chambers (for macroinvertebrates and sediment) and the treatment areas 

(for macroinvertebrates only) at three different time periods.  The random sampling 

design accounted for non-uniform stream conditions across the width of the sampling 

area and for the natural patchy distribution of benthic macroinvertebrates (Pringle et al., 

1988). 
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Percent embeddedness measurements were taken at each site only once during the 

course of the study.  A substrate sample was collected at each site and analyzed for 

possible sediment toxicity.   Diffusive Gradient in Thin Films (DGTs) were exposed for 

24 hours in each of the treatment areas at both sites and analyzed for any metal (Zn, Cd, 

Ni, Cu, and Pb) toxicity that may have influenced macroinvertebrate colonization.  DGTs 

measure the concentration of chemical species or fluxes from solid phase to solution in 

bulk sediment, such as in the pore water of interstitial spaces (Davison et al., 2000).  

Water quality parameters; temperature, pH, conductivity, dissolved oxygen, and turbidity 

were monitored in addition to stream flow.  Water samples for the determination of total 

suspended solids (TSS) were taken at different intervals throughout the embeddedness 

chamber exposures.  The majority of the field work for this study occurred from 1-

October-07 to 22-October-07.     

 

Embeddedness Chamber Development 
 

Chamber Design. 

The embeddedness chamber was developed using a previously designed in situ 

toxicity chamber (Burton et al., 2005), with some substantial modifications to meet the 

requirements for a completely flow-through system.  Unlike the in situ toxicity chambers, 

the embeddedness chamber was designed to allow organisms and larger sediment access 

into the interior of the chamber.  Initially, the embeddedness chambers were created with 

smaller mesh sizes (1 & 2 mm), but were revised with a larger 4 mm opening mesh to 

allow for more infiltration of organisms and sediment.  Furthermore, the embeddedness 
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chambers originally were designed with no holes in the end caps, but were then modified 

with 4 mm holes drilled into each end cap.  These holes were added to allow the chamber 

design to accommodate hyporheic (subsurface) flow and provide an environment more 

closely exhibiting in-stream conditions. 

  The in situ embeddedness chamber was constructed of cylindrical cellulose 

acetate butyrate tubing with a 6.67 cm inner diameter (ID), 6.98 cm outer diameter (OD), 

0.16 cm wall thickness, and a length of 12.7 cm.  Two rectangular sections (8.5 cm x 4 

cm) were removed on each core tube leaving an 8.5 cm x 1.0 cm section of the tube 

remaining intact on the top portion of the chamber for support (Figure 4).  Each end of 

the cylindrical tubing was capped with a polyethylene closure that had approximately 1/3 

of the end portion removed (Figure 5).  Each end cap had nine evenly spaced 4 mm holes 

drilled into the flat end portion of the cap (Figure 5). The constructed bare chamber with 

caps was then enclosed with mesh with 4 cm diameter openings (soft nylon laundry bag 

mesh) using DAP® clear silicone sealant (Figure 6).  The nylon mesh was affixed only to 

one end cap, allowing for easy removal of the other end cap.  When complete, the 

chamber resembled a slightly reinforced, lengthwise half-cylinder with a flat mesh top 

(Figure 7).  Next, the chamber was filled with precisely 110 clear glass spherical marbles, 

all with a uniform 14 mm diameter.  The non-secured end cap was placed on the chamber 

and the mesh flap was pulled tight over the cap.  A plastic zip tie was tightened around 

the circumference of the cap securing the mesh flap in place and the marbles in the 

chamber. 
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Figure 4.  Unassembled Embeddedness Chamber and Dimensions with Nylon Mesh 

Attached. 
 

 
Figure 5.  Unassembled Polyethylene End Cap with 4 mm Holes to Allow for 

Subsurface Flow Through the Chambers. 
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Figure 6.  Assembled Polyethylene End Cap and Flow-through View of 

Embeddedness Chamber. 
 

 

 
Figure 7.  Fully Assembled Embeddedness Chamber Ready for Deployment. 
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Embeddedness Chamber Cover. 

Covers were designed to minimize any unwanted sediment depositing in the 

chambers during deployment and to minimize any sediment loss from the chamber upon 

retrieval. A 12.7 cm length of cylindrical cellulose acetate butyrate tubing (the same used 

to construct the chambers) was cut lengthwise in half and then a polyethylene cap was 

hot-glued to each end of the section of tubing.  The polyethylene caps were then trimmed 

so a circular flap would cover the holes in the chamber caps when the cover was installed 

on the chamber (Figure 8).   

 

 

Figure 8.  Embeddedness Chamber Deployment and Retrieval Cover. 

 

Pilot Study 

A pilot study was conducted with the preliminary design of the embeddedness 

chamber (1 mm mesh, no end cap holes) to gather data that was analyzed to determine 

the number of replicates needed to determine a significant difference (at the desired 

confidence interval) between sites.  Accumulated sediment weight was the only endpoint 

for this study.  The original experimental design planned for conducting the study on one 
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river and analyzing the differences between sites.  Four sites were used on the Mad River 

within the city limits of Dayton, Ohio.  A specific location was chosen at each site that 

allowed for adequate flow across the chambers.  Each tray location exhibited a run 

habitat that was approximately 1/4 of a meter deep.   

 

Chamber Deployment. 

Four chambers were secured to each metal in situ basket and two baskets were 

placed at each site, equaling a total of eight embeddedness chambers per site.  At each 

site both baskets were placed adjacent to each other in similar conditions.  In situ baskets 

were partially buried in a cleared out section of the streambed so that when the chambers 

were installed the flat mesh portion would be relatively flush with the surrounding 

undisturbed substrate. The baskets were placed perpendicular to the flow at each site. 

Each in situ basket was secured by driving a metal rod into the streambed and then 

securing the basket to the rod with a plastic zip tie.  Each chamber was carefully placed 

into the in situ basket (with the end cap with the affixed mesh facing upstream) and 

secured by elastic straps. 

Once the chambers were secured, substrate that was removed to bury the basket 

was then carefully arranged around the upstream and downstream sections of the 

chambers so that the flat upper portions of the chambers were flush with the surrounding 

undisturbed sediment.  Care was taken to not disturb any fine sediment while ensuring 

the substrate around the chambers was flush.  Care also taken to not walk upstream of the 

chambers once they were secured in the baskets.  
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Chamber Retrieval.  

The embeddedness chambers were retrieved after seven days.  Each chamber was 

individually removed from the in situ basket and sealed in a plastic bag.  Care when 

removing the chambers from the river prevented any significant loss of collected 

sediment. 

Sample Processing. 

In the laboratory, each chamber was removed from its bag and emptied into a 1 

mm sieve and into a collection tray.  The retained marbles were rinsed with water and the 

remaining sediment and water mixture was poured into a 500 mL pre-weighed glass 

beaker.  Then the beakers were dried in an oven at 104 °C for seven days.  Subsequently, 

they were reweighed to obtain a dry sediment weight.  

 

Primary Embeddedness Chamber Experiment 

Embeddedness Chamber Deployment. 

Improvements derived from the pilot study were incorporated into the final 

chamber deployment.  Changes from the pilot study included a larger mesh size (4 mm) 

on embeddedness chambers, a total of 24 deployed chambers per site, utilization of a 

different in situ tray, the use of macroinvertebrate colonization as an endpoint, and the 

securing of chambers to in situ baskets with zip ties instead of elastic straps. 

  In preparation for the final deployment, a total of 24 chambers were prepped in 

the lab, with each chamber receiving precisely 110 clear glass marbles.  Loose caps were 

installed on each chamber and mesh flaps were secured with zip ties.  Prior to installing 
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the in situ trays in the stream, three embeddedness chambers were secured to one metal in 

situ tray using two zip ties per chamber, one around each rigid end of the chamber 

(Figure 9).  The three chambers were placed adjacent to each other so there was no space 

between the sides of the chambers (Figure 9).  Once the chamber covers were installed on 

each chamber, the in situ tray was installed in the stream.  The placement area for the in 

situ tray was carefully prepared by removing enough substrate so that the flat portion of 

the chamber would be flush with the surrounding undisturbed substrate when the trays 

were in place (Figure 10). 

A total of eight in situ trays were installed at each site, with each tray being 

positioned so that the end cap with the adhered mesh was facing perpendicular to (into) 

the stream flow.  In situ trays were all placed adjacent to each other, each tray end flush 

to the next, across the width of the sampling area (Figure 11).  Each tray was secured 

with plastic zip ties to a steel rod driven into the substrate on either side of the tray.  Once 

the trays were secured in place, the substrate that was removed to allow tray placement 

was then carefully spread around the chambers and trays so that the substrate was level 

with the undisturbed substrate in the area.  After the site was allowed to settle for ~2 

minutes the chamber covers were removed.  When deployed, only the upper halves of the 

embeddedness chambers were visible (Figure 10).  As with the pilot study, care was 

taken to avoid walking upstream of the chambers and disturbing any substrate that would 

cause fine sediment to flow across the deployed chambers. 
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Figure 9.  Embeddedness Chambers Attached to an In Situ Tray and Ready for 

Deployment. 
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Figure 10.  Embeddedness Chambers Deployed on In Situ Tray (Honey Creek). 
 

 
Figure 11.  Fully Deployed Series of Embeddedness Chambers at the Honey Creek 

Site. 

 

Embeddedness Chamber Retrieval. 

The primary concerns when retrieving embeddedness chambers were to minimize 

any loss of sediment that had collected in the chambers and to not introduce any 

unnatural sediment flow across the chambers.  When removing chambers, care was taken 

not to disturb any of the substrate upstream of the chamber area as well as immediately 

downstream of the chamber area.  Any unnecessary disturbance of fine sediment would 

affect the treatment areas downstream of the chamber areas.  Chamber covers were 

installed on chambers that were to be recovered for the particular sampling period, 

according to a randomized sampling scheme.  Care was taken, when installing the 
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chamber covers, to gently push the cover flaps over the bottom portion of the chambers in 

order to block the end cap holes and prevent any unnecessary disturbance of the substrate 

surrounding the chamber.  Once the chamber covers were in place, wire cutters were used 

to remove the zip ties on both the front and back of the chamber to be removed.  The 

individual removing the chamber maintained pressure on it (flow conditions being strong 

enough to move the unsecured chamber) until the chamber was removed from stream and 

placed in the plastic bag.   The chamber was removed gently yet quickly and immediately 

placed in the plastic bag which was quickly sealed.  In turn, this bag was sealed inside 

another plastic bag as an added precaution against any sediment loss.   Once the chamber 

was removed, a small amount of substrate was placed in the space where the chamber 

was so that the adjacent chamber’s flat mesh portion was flush with the surrounding 

undisturbed substrate.     

 
 

  Treatment Areas 
 

Each sampling site had three treatment areas that were located approximately one 

meter downstream of and parallel to the embeddedness chambers.  Each treatment area 

consisted of a 3 m wide x 1m long rectangular area marked at each corner by a 20 cm 

metal stake with an orange tip.  The three treatment areas were designated as such:  

Undisturbed-- (reference) with no disturbance of the in-stream substrate conditions; 

Slightly disturbed--all substrate particles within this treatment area that were not fully 

embedded or buried were wiped clean (by hand) of all loose particles and organisms; 

Disturbed--all surface substrate particles as well as all substrate particles down to 

approximately 10 centimeters deep were loosened and agitated with shovels and the fine 
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substrate particulates and organisms were allowed to flow out of the treatment area.  The 

three treatment areas were arranged in order of undisturbed, slightly disturbed, and 

disturbed downstream of the embeddedness chambers (Figure 12).   

 

Random Sampling Design 
 

Embeddedness Chambers. 

A total of 24 chambers designated for both benthic invertebrate colonization 

sampling and total sediment sampling were deployed and labeled from 1 to 12 starting 

from the left bank looking downstream (chambers were arranged  across the channel).  

The embeddedness chambers for each site were split into two series consisting of 12 

chambers per series, numbered 1 through 12.  When situated in the stream, facing 

downstream, the two series were numbered as such: 1, 1; 2, 2; 3, 3; …12, 12 (Figure 12).  

A fair coin was tossed to determine which series of embeddedness chambers were 

dedicated to macroinvertebrate colonization (benthos) and which series were dedicated to 

sediment accumulation and porosity.  As a result of the coin toss the chambers in the first 

series were dedicated to macroinvertebrate colonization and the second to total sediment 

accumulation and porosity. 

     One random number set was generated (1:12) and the results were divided into 

thirds. Another random number set was generated (1:3) to determine which chambers in 

their respective third of the random number set from 1 to 12 were sampled during the 

three sampling time points (4 d, 7 d, & 14 d)  (Figure 12). The results of the random 

number generation from 1 to 3 were each assigned a sampling time point (Figure 12).   
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It neither can be assumed that sediment deposition/embedding occurs evenly across the 

river width due to variable velocity and flow and that the patchy distribution of benthic 

macroinvertebrates holds true (Pringle et al., 1988).  To account for this phenomenon, the 

random number set (1-12) was used to give a randomized selection of the embeddedness 

chambers across the width of the sampling area.     

 

Treatment Areas.  

  Each 3 m x 1 m treatment area was divided into six 1 m wide x ½ m long 

subareas.  The treatment subareas were numbered from 1 to 6, starting at the upstream 

left bank block of the treatment area (Figure 12).  One random number set (1-6) was 

generated and the results divided into thirds.  Another random number set was generated 

(1-3) to determine which subareas in their respective third of the random number set from 

1 to 6 were sampled during the selected sampling times (Figure 12).   
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Figure 12.  Schematic of the Experimental Design of Both the Embeddedness 
Chambers and the Treatment Areas.  Two Numbers from Each Treatment Area 

Were Randomly Selected For Each Sampling Event.  Four Embeddedness Chamber 
Numbers (both for benthos and sediment) Were Randomly Selected for Each of the 

Three Sampling Events. 

 

 

Sediment Quality Testing 
 

A 10-day sediment toxicity test using Hyalella azteca was conducted according to 

USEPA methods to determine if there was any background toxicity within the sediments 

at the sites that may affect macroinvertebrate colonization (USEPA, 2000).  As an 

additional precaution, DGTs were exposed for 24 h in each of the treatment areas at both 

sites to detect sediment metal toxicity in particular.  DGTs have been found to provide a 

time-averaged effect of the separation of chemical species and quickly reach a near 

SSeeddiimmeenntt 
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steady state situation, thus allowing for the direct interpretation of the measurement as a 

mean flux or a concentration (Davison et al., 2000).  One DGT was installed in each of 

the three treatment areas at both sites.  Each DGT was inserted with care into the 

sediment as far as possible (length-wise) without physically forcing it too much.  DGTs 

were placed with the narrow portion facing the flow to minimize surface area exposed to 

floating debris.   

  

Physicochemical Water Quality Parameters 
 
 

To evaluate whether the embeddedness chambers would be effective instruments 

to quantify embeddedness during steady conditions, it was necessary to monitor certain 

water quality parameters.  Stream flow was monitored to determine if major fluctuations 

in flow, due most likely to storm events, would cause increased bed flow movement of 

sand and gravel particles across the surface of the embeddedness chambers.  Flow rates 

were recorded using a Swoffer 3000 flow meter (Swoffer Instruments, Seattle, WA) on 

six occasions over the course of the final embeddedness chamber exposure periods.  Steel 

rods were hammered into each bank of the stream during the first flow rate measurement 

occasion so that all flow rate measurements could be conducted at the same location on 

each occasion. 

Water samples were taken and analyzed for TSS on five occasions to clarify 

whether any major fluctuations occurred during the chamber exposure period.  TSS was 

determined according to Standard Methods (1998).  The water quality parameters 

turbidity, dissolved oxygen, specific conductance, temperature, and pH were monitored 
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using a YSI 6920 Sonde (Yellow Springs Instruments, Yellow Springs, OH).  In 

particular, turbidity was scrutinized as an indicator of possible fine sediment transport, 

especially when accompanied by higher flow events.   

 

Substrate Characterization 
 

Grain Size Fractional Analysis of EMB Chamber Sediment. 

The basic method for analyzing the material within the embeddedness chambers 

was wet sieving to separate the desired size fractions.  Subsequently, drying was 

performed to obtain the dry weight of the sediment as well as loss on ignition weight.  

The method used to determine grain size fractional analysis of the embeddedness 

chambers was adapted from the USEPA’s Experimental Stream Facility standard 

operating procedure (unpublished data) for the determination of sediment size fractions 

accumulated in cobble trays.  The desired endpoint of sediment weight for this part of the 

study made wet sieving feasible.  However, if the sediments were to be chemically 

analyzed, an alternate method would have been required.  Wet sieving has been shown to 

substantially change the physicochemical characteristics of a sediment sample (i.e., 

decreased percent total organic carbon and decreased total PCBs) (Day et al., 1995).  

Sequential Loss on Ignition (LOI) is an accepted and widely used method to estimate 

both the organic and carbonate content of sediments (Dean, 1974).  Dry weight of the 

sediment was determined after drying in an oven, organic content was determined after 

firing the sediment at 550 °C, and carbonate content was determined after firing at 1000 

°C.  The theory behind the last step is that at 1000 °C carbon dioxide is evolved from 
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carbonate (calcium carbonate), leaving only oxides behind (Dean, 1974; Heiri et al., 

2001).  The determination of the organic and carbonate fractions of the embeddedness 

chamber sediments facilitated the calculation of chamber porosity using the bulk density 

and the wet sediment volume obtained from this process.   

Prior to processing the embeddedness chambers, several items were prepared.  All 

weights were recorded on a lab sheet to the nearest 0.01 g.  A 5.7 L plastic bucket for 

capturing the <63 µm fraction slurry was rinsed with water, dried, and then weighed.  

Three 100 mL capacity ceramic crucibles (one each for 2mm, 250 µm, and 63 µm 

sediment fractions) per embeddedness chamber were pre-ashed in a muffle furnace at 550 

°C for 1 h and then weighed. One capped 53 mL plastic bottle (used to take an aliquot 

from the <63 µm slurry) was weighed.  One crucible per embeddedness chamber, to hold 

a 47 mm diameter, 1.2 µm pore size quartz filter (SKC, Eighty Four, PA), was pre-ashed 

at 550 °C in a muffle furnace for 1 h then weighed.  Finally, two 4.25 cm diameter, 1.2 

µm quartz filters per embeddedness chamber were pre-ashed in a muffle furnace at 550 

°C for 1 h and then weighed.  

 Each embeddedness chamber that had been designated for sediment analysis was 

processed to obtain four different grain size fractions (>2 mm, 2 mm - 250 µm, 250 µm - 

63 µm, and 63 µm – 1.2 µm).  Each individual chamber and zip lock bag in which it was 

stored was weighed prior to emptying.  Individual embeddedness chambers were emptied  

into a sieve stack consisting of the following 25.4 mm diameter sieves, from top to 

bottom, respectively:  5.6 mm (retained the marbles), 2 mm, 250 µm, and 63 µm.  The 

5.7 L plastic bucket was placed under the sieve stack and the entire arrangement was 

placed in a deep sink. 
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Next, a spray nozzle attached to a hose (deionized source) was used to rinse all of 

the material out of the zip lock bag and the embeddedness chamber through the top sieve 

(5.6 mm).  The marbles retained on the 5.6 mm sieve were thoroughly rinsed to remove 

any noticeable material and then the 5.6 mm sieve was removed from the stack. The 

rinsed zip lock bag, marbles, chamber, and zip tie were set aside for determination of 

chamber pore volume.  The material remaining on the 2 mm sieve was thoroughly rinsed, 

using the spray nozzle, washing any material smaller than 2 mm through the sieve and 

into the 250 µm sieve below.  Then the 2 mm sieve was removed from the stack and the 

material retained on the 2 mm sieve was placed into a pre-weighed 100 mL crucible and 

dried in an oven at 104 °C for 24 h.  Once cool, the crucible was reweighed and then 

placed in a muffle furnace and fired for 1 h at 550 °C.  The crucibles were again weighed 

after cooling and then fired one last time in a muffle furnace at 1000 °C for 1 h.  The 

crucible was weighed a final time to determine the Loss on Ignition (LOI) weight due to 

carbonate burn off.  The above procedure of rinsing, drying (104 °C), ashing (550 °C and 

1000 °C), and weighing was repeated for the material retained on the 250 µm and 63 µm 

sieves, as well.  

   After cooling on a brick tray, all crucibles were placed in a desiccator for 

thorough drying (for at least 30 min) before weighing.  Lastly, the plastic bucket (with no 

remaining sieves) containing the rinse water and material smaller than 63 µm was 

weighed.  A small mixer attached to an electric drill was used to stir the contents of the 

bucket as quickly as possible without allowing a vortex to form.  When the contents of 

the bucket appeared to be uniformly mixed, the 53 mL plastic bottle was submerged 

(inverted) halfway down into the sediment solution and then turned upright to fill with 
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sediment and capped.  The exterior of the bottle was then dried off and the bottle was 

weighed. 

A vacuum filtration apparatus with a three port filter manifold was used to filter 

the entire contents of the 53 mL bottle through a 1.2 µm pore size, 47 mm diameter 

quartz filter (SKC, Eighty Four, PA).  Any material retained inside the bottle and on the 

side of the filter holder was rinsed onto the filter.  The filter used for one sample (one 

embeddedness chamber) was placed in a pre-weighed crucible and dried in an oven at 

104 °C for 24 h.  The crucible and filter were then weighed and processed in the same 

manner as the other size fractions (muffle furnace at 550 °C & 1000 °C for 1 h each).  

 

Sediment Dry Weight Calculations.  

The formula for the weight of the dry fraction (DF) of sediments retained on the 2 mm, 
250 µm, and 63 µm sieves is: 
    fff TWSWDF −=                                       (1)   

Where  DFf = Dry fraction of sediments retained on the particular sieve 
 SWf = Weight of crucible and dried sample 
 TWf = Weight of crucible 
       f=fraction being analyzed (2 mm, 250 µm, and 63 µm)  
 
The formula for the estimated weight of the dry fraction of sediments that retained on the 
1.2 µm filter is: 

    ( )( ) ( )
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Where  DF1.2            = Dry fraction of sediments retained on 1.2 µm filter 
 SW1.2            = Weight of crucible, filters, and dried sample 
 TW1.2            = Weight of crucible 
 TW(f1 –f2)       = Weight of filters (as needed) 
 SWSedsoln       = Weight of sediment solution 
 SWft              = Weight of falcon tube filled with sediment solution 
 TWft              = Weight of empty falcon tube 
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The formula for the Total Solids Accumulated is: 

2.1632502 DFDFDFDFDFTot +++=
              (3) 

Sediment LOI Calculations. 

The LOI for the organic fraction of the sediment is: 
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The LOI for the carbonate fraction of the sediment is: 
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Embeddedness Chamber Porosity. 

 The rinsed zip lock chamber storage bag and chamber (marbles installed, end cap 

secured, and zip tie taut over the mesh flap) were placed in an oven at (50 °C) to dry for 

24 h.  Once dry and cool, the zip lock bag and chamber were weighed and the weight was 

recorded.      

 

Chamber Porosity Calculations. 

The formula for the density of the sediment sample particles is: 
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Where  SWwet sed  = Weight of EMB chamber sediment/water (chamber wet weight –    
            clean chamber dry weight) (g) 
   TWchamber  = Tare weight of embeddedness chamber (test substrate and  
                  storage bag included) (g) 

SWdf          = Weight of dried sediment fraction (2 mm, 250 µm,                                   
63 µm, or 1.2 µm) (g) 

   Vol            = Volume of wet sediment from chambers see equation 5 (cm3)  
   ρwater        = Density of water (1 g/cm3) 
 
The volume of wet sediment within the chambers is:  
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The water content of the sediment is:  
 
 

( )
100*(%) 104
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Where Tot DF 104 = Total dry fraction of the dried chamber sediments (24 h at 104°C) 
 
 
 
The percent of organic matter in the sediment is: 
 

( )
100*%
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Where Tot DF 550 = Total dry fraction of sediment after firing in a muffle furnace at  
           550°C for 1h 
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The percent CaCO3 in the sediment sample is: 
 

( )
100*274.2*%

104

1000550
3 DFTot

DFTotDFTot
CaCO

−
=               (10) 

 
 
Where Tot DF 1000 = Total dry fraction of sediment after calcification in a muffle             

furnace at 1000°C for 1h. 
 
The percent inorganic content of the sediment is: 
 

 
( )OrganicCaCOInorganic %%100% 3 +−=    (11) 

 
 
 

Benthic Macroinvertebrate Characterization 
 
 

RBP. 

Following the methods described in Chapter 7 of the USEPA’s Rapid 

Bioassessment Protocol (Barbour et al., 1999), the aquatic macroinvertebrate community 

was sampled once at each site on (Honey Creek and Stillwater River) 28-September-07. 

Preserved macroinvertebrate samples were emptied into a 500 µm sieve and rinsed with 

deionized water to remove any fine particulates.  Any large organic matter, such as leaves 

and twigs as well as any large substrate particles were rinsed on the sieve and then 

discarded.  Each sample was then spread evenly in a 30 cm x 36 cm standardized 

subsampling tray with 30 grids (6 cm x 6 cm).  A random number set from 1 to 30 was 

generated to determine which previously numbered grids were to be sampled.  The 

contents of each grid were sorted under a dissecting microscope (10x magnification) 

using a modified Bogorov counting chamber.  The subsamples were sorted into insects, 
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non-insects, and debris.  Subsequently, organisms were preserved with a 70% ethanol 

(ETOH) solution and sorted debris with a 95% ETOH solution.  Only insects were used 

in analysis due to time constraints.  All insects were identified to family level or lowest 

practical taxa using Peckarsky et al. (1990) and Merritt et al. (2008).  

 

EMB Chamber Macroinvertebrate Colonization. 

The embeddedness chambers designated for macroinvertebrate colonization were 

processed in the lab immediately upon returning from retrieving chambers in the field.  

Chambers were emptied into a sieve stack containing a 5.6 mm sieve for retaining the 

marbles on top of a 500 µm sieve for retaining the invertebrates.  The marbles and 

chamber were thoroughly rinsed and inspected for any clinging invertebrates and then the 

5.6 mm sieve was removed from the stack.  The sample retained on the 500 µm sieve was 

rinsed with deionized water to remove any fine particulate matter; the unsorted sample 

was then preserved in a 70% ETOH solution in a glass vial.  Samples were sorted and 

enumerated under a dissecting microscope (10x magnification) using a modified Bogorov 

counting chamber.  Samples were separated into insects, non-insects, and debris and then 

preserved with either a 70% ethanol (ETOH) solution (organisms) and a 95% ETOH 

solution (sorted debris).  All insects were identified to family level or lowest practical 

taxa using Peckarsky et al. (1990) and Merritt et al. (2008).  
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EMB Chamber Macroinvertebrate Metrics. 

A variety of macroinvertebrate metrics were chosen to assess each sampling site.  

The following richness measures (predicted to show a decrease with increasing 

perturbation) were assessed: Total number of taxa, Number of EPT taxa, Number of 

Ephemeroptera taxa, Number of Plecoptera taxa, and Number of Trichoptera taxa, and 

Number of Diptera taxa.  Richness measures such as those listed above reflect the 

diversity of an aquatic macroinvertebrate assemblage (Resh et al., 1995).  An increase in 

diversity correlates with the increasing health of an assemblage and suggests that 

ecological conditions are adequate to support many species (Barbour et al., 1999).  The 

following composition measures (predicted to show a decrease with increasing 

perturbation) were assessed: % EPT, % Ephemeroptera, % Plecoptera, and % 

Trichoptera.  The following additional composition measures that are predicted to show 

an increase with increasing perturbation were assessed: % Diptera and % Chironomidae.  

Measures of composition provide information on the make-up of the macroinvertebrate 

assemblage and on the relative contribution of particular populations to the total 

ecosystem fauna (Barbour et al., 1999).   

Tolerance and intolerance measures are used to assess the relative sensitivity to 

perturbation and are normally non-specific to the type of stressor (Barbour et al., 1999).  

However, some metrics such as the Family Biotic Index (FBI) developed by Hilsenhoff 

(1998) provide a means of evaluating a particular stressor, such as organic pollution.  

Two tolerance/intolerance measures (% Dominant taxa, Family Biotic Index, and % 

Hydropsychidae to Trichoptera) were assessed, both of which are predicted to show an 

increase with increasing perturbation.  A feeding measure such as functional feeding 
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groups provides information on a system’s feeding strategy balance within the benthic 

macroinvertebrate assemblage and imbalances can reflect stressed conditions (Barbour et 

al., 1999).  Two feeding measures that were assessed, which are predicted to decrease in 

response to increasing perturbation, were %Shredders and % Grazers & Scrapers.  Two 

additional feeding measures were assessed (% Filterers & % Predators), both of which 

have a variable predicted response to increasing perturbation. Additional measures of 

interest that were evaluated were total number of Chironomidae and number of 

Hydropsychidae.   

 The intent of assessing these metrics, in both the embeddedness chambers and 

treatment areas, was to determine any correlations in noticeable responses and changes in 

fine sediment deposition into areas inhabited by benthic macroinvertebrates (insects 

only).    

 

 Treatment Area Sampling. 

Each treatment area was sampled during the three sampling periods according to a 

random sampling scheme that selected two sub-areas.  A modified Hess sampler (Figure 

13) with 250 µm mesh was used to sample the treatment areas.  The modified Hess 

sampler had an inside diameter of 21.9 cm.  The area used for insect densities (# 

insects/m2) was calculated from the following equations:  

 
2rcircleaofArea π=     (12) 

 
 

Where:   r = 10.95 cm (radius of the modified Hess sampler) 
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All large substrate particles within the sampler were brushed clean by hand.  A 

garden trowel was used to disturb the substrate within the sampler down to a depth of 

approximately 10 cm.  Care was taken to minimize the amount of debris that was 

collected in the 250 µm mesh.  Once the sub-area was sampled, the modified Hess 

sampler was placed with the meshed end in the current so all organisms could be washed 

into the cod end of the mesh and collected.  All debris and organisms were funneled into 

a 1 L plastic bottle and preserved with an 80% ETOH solution.  All insects were 

identified to family level or lowest practical taxa using Peckarsky et al. (1990) and 

Merritt et al. (2008).  
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Figure 13.  Modified Hess Sampler Used to Sample Treatment Areas. 

 

 

Macroinvertebrate Sorting and Identification. 

Preserved samples were emptied into a 500 µm sieve and rinsed with deionized 

water to remove any fine particulates.  Any large organic matter, such as leaves and twigs 

as well as any large substrate particles were rinsed over the sieve and then discarded.  

Each sample was then placed in a 25 cm x 20 cm white plastic counting tray.  The 

contents of each sample were sorted under a dissecting microscope (10x magnification) 

using a modified Bogorov counting chamber. All insects were identified to family level 

or lowest practical taxa using Peckarsky et al. (1990) and Merritt et al. (2008).  
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IV. Results and Analysis 
 

Pilot Study  
 

The first EMB chamber prototype was tested at four locations on the Mad River 

and a statistical power analysis (Minitab V15) was performed on the sediment dry weight 

data.  The results from this analysis helped determine how many replicate chambers were 

needed at each site to determine differences.  Power analysis revealed that with an α-level 

of 0.05 and an assumed standard deviation of 3.0, only four chambers per site would be 

sufficient in order to detect differences.  This initial deployment was conducted over a 

seven day period from 18-June-07 to 25-June-07.  There was a moderate flow event 

during this initial exposure of the embeddedness chambers which may have led to the 

chambers rapidly accumulating sediment (Figure 15).  
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Figure 14.  Pilot Study Embeddedness Chamber Dry Weight. 
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Figure 15.  Hydrograph June/July 2007 from USGS Gage Station Located 

 Near Huffman Dam on the Mad River near Dayton, OH. 
  
 

 

EMB Chamber Optimization  
 

A noticeable amount of sediment accumulated within the chambers starting at day 

4 of the exposure period and appeared to increase steadily through the 7-Day and 14-Day 

exposures.  There were no lost chambers throughout the three exposure periods and all 

chambers appeared to be in the same position from deployment, indicating that the zip 

ties were sufficient to hold the chambers in position on the in situ trays.  Flow remained 

relatively steady and low during the entirety of the exposure periods (Figures 19 and 20) 

Discharge (cfs) -----USGS gage 0327000 Mad River, OH

Pilot Study Embeddedness Chamber Exposure 
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thus, the deployed chamber arrangement has yet to be tested under relatively high flow 

conditions.  Results from the chamber colonization indicate that the 4 mm mesh openings 

were large enough to allow a wide variety and variable sizes of organisms to enter the 

chambers.  All chambers remaining after the 4-day exposure had developed a fine layer 

of algae on the surface.  Some chambers had collected leaf litter on the upstream side of 

the chamber, an inevitable consequence of the early October exposure periods.  Leaf litter 

was carefully removed from all affected chambers on their respective sampling day. 

 

Sediment Quality Testing 
 
  As noted in a previous section, a sediment toxicity test was conducted to 

determine if preexisting background toxicity impacted macroinvertebrate colonization.  

The test was conducted at approximately 23 °C with a 16 h light/8 h dark photoperiod.  

Test containers were 300 mL high form glass beakers filled with 100 mL of site sediment 

(100 mL of Ottawa sand for the lab controls) and 175 mL of overlying culture water.  

Four replicates and four controls were tested for the each of the two study site sediments.  

Ten 7-14 day old amphipods were added to each beaker at the start of the test.  Overlying 

water changes were conducted twice a day using an apparatus that accurately delivered a 

volume of water to the test beakers (Zumwalt et al., 1994).  After an overlying water 

change, amphipods in all beakers were fed approximately 0.15 g of crushed rabbit food 

pellets (Nutriphase) once a day.  The following water quality parameters were monitored 

at specified times throughout the 10 day test: pH, dissolved oxygen, conductivity, 

temperature, alkalinity, and hardness.  Results from a two-sample t-test show no 

significant differences in mean survival between Honey Creek sediment (87.5% survival, 
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p=0.138) and the control (97.5%) and Stillwater River sediment (90%, p=0.391) and the 

control (Figure 16). 
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Figure 16.  Ten-Day USEPA Sediment Toxicity Test Results for the Two Site 
 Sediments. 

 

 

Following a 24 h exposure in the treatment area sediment DGTs were analyzed 

for the following metals:  cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc 

(Ni).  Results indicate that Zn and Cu had the highest flux from both sites with the more 

disturbed treatment areas at Honey Creek (slightly disturbed and disturbed) showing 

higher flux than the undisturbed treatment area (Figure 17). 
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Figure 17.  Total Metal Flux/Day from Sediment to DGTs (Honey Creek). 
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Figure 18. Total Metal Flux/Day from Sediment to DGTs (Stillwater River). 
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The Stillwater River site however, showed higher flux in CU and Zn in the less disturbed 

areas (undisturbed and slightly disturbed) (Figure 18). The blank DGTs show fairly high 

concentrations of Cu and Zinc suggesting possible cross-contamination during the 

analytical laboratory analysis (Figures 17 and 18).  

 

Physicochemical Water Quality Parameters  

 

Discharge. 

Stream flow (discharge) was monitored on six occasions over the 4-14 day 

embeddedness chamber exposure period in order to determine whether the embeddedness 

chambers would be effective in representing embeddedness occurring during steady 

stream flow conditions.  No major fluctuations in flow at both sites were recorded and 

discharge remained relatively stable over the 14 day embeddedness exposure period 

(Figures 19 & 20, Table 1).  No major rainfall (0.04 in on 1-October-07 and 12-October-

07) was recorded and the greater Dayton area experienced extremely dry conditions 

during the exposure period (Figure 21).  The Honey Creek site maintained a mean flow of 

0.311 m3/sec with flow increasing slowly from 0.293 m3/sec on 3-October-07 to 0.319 

m3/sec on 15-October-07.  The Stillwater River site experienced small fluctuations in 

flow and did not increase steadily like Honey Creek.  The Stillwater River site had a 

mean flow of 0.852 m3/ sec over the exposure period and experienced the lowest flow on 

15-October-07 and the highest flow on 5-October-07 (Table 1).  

 



 63

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

10
/1/

07

10
/2/

07

10
/3/

07

10
/4/

07

10
/5/

07

10
/6/

07

10
/7/

07

10
/8/

07

10
/9/

07

10
/10

/07

10
/11

/07

10
/12

/07

10
/13

/07

10
/14

/07

10
/15

/07

D
is

ch
ar

ge
 (m

3 /s
ec

)

Honey Creek Stillwater River

 

Figure 19.  Discharge for the Two Sampling Sites over Embeddedness 
 Chamber Exposure Periods. 

 
 
 
 

Table 1.  Discharge for the Two Sampling Sites over the Embeddedness Chamber 
Exposure Periods. 

 
Honey Creek   Stillwater River 
Date  Flow   Date Flow 

10/1/2007 0.314  10/1/2007 0.920
10/3/2007 0.293  10/3/2007 0.864
10/5/2007 0.312  10/5/2007 0.916
10/8/2007 0.316  10/8/2007 0.786
10/12/2007 *  10/12/2007 0.874
10/15/2007 0.319  10/15/2007 0.753

Mean Flow 0.311   Mean Flow 0.852
                              *Readings not taken on this date  
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Figure 20.  Hydrograph for October 2007 from USGS Gage Station Located 
 Downstream of the Stillwater River Site. 

  
 
 

October 2007 

Embeddedness Chamber Exposure 

-----USGS gage 03265000 Stillwater River at Pleasant Discharge (cfs) 



 65

 
 

 
 

Figure 21.  Precipitation for October 2007 from USGS Gage Station Located 
 Downstream of the Stillwater River Site. 

 

 

Total Suspended Solids. 

Water samples were taken at both study sites on three occasions over the 

embeddedness chamber exposure periods and analyzed for total suspended solids.  

Concentrations obtained from analyzing the Honey Creek water samples were recorded 

with the lowest TSS concentration being 3.8 mg/L and the high concentration of 9.0 

mg/L (Table 2).  Stillwater River TSS concentrations exhibited a low of 1.3 mg/L and a 

October 2007 

Embeddedness Chamber Exposure 

-----USGS gage 03265000 Stillwater River at Pleasant Precipitation (in) 
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high of 6.0 mg/L.  No concentrations of over 10.0 mg/L were recorded over the sampling 

period (Figure 22).   
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Figure 22.  Total Suspended Solids Concentrations Sampled During 
 the Embeddedness Chamber Exposure Period. 

 
 
 
Table 2.  TSS Concentrations from the Primary Embeddedness Chamber Exposure 

Periods. 
 

Date Site 
TSS 

(mg/L) 
10/1/2007 HY 5.00 
10/9/2007 HY 9.00 
10/15/2007 HY 3.75 
10/8/2007 SR 6.00 
10/15/2007 SR 1.25 
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Turbidity. 

Turbidity measurements taken during the embeddedness chamber exposure 

periods indicate that there was very little fluctuation at both Honey Creek and the 

Stillwater River (Figure 23).  Turbidity at Honey Creek varied from near zero to only 1.5 

NTUs (Table 3).  Turbidity readings from the Stillwater River varied from 0.8 NTUs to a 

maximum of 2.8 NTUs (Table 3).   
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Figure 23.  Turbidity Measurements from the Study Sites during Embeddedness 

Chamber Exposures. 
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Table 3.  Turbidity Readings (NTU) from the Primary Embeddedness Chamber 
Exposure Periods. 

 

Date Site 
Turbidity 

(NTU)  
10/1/2007 HY Cr 0 
10/3/2007 HY Cr 1.1 
10/5/2007 HY Cr 0 
10/8/2007 HY Cr 0.5 
10/15/2007 HY Cr 1.5 
10/1/2007 SR * 
10/3/2007 SR 1.8 
10/5/2007 SR 1.8 
10/8/2007 SR 2.8 
10/12/2007 SR 1 
10/15/2007 SR 0.8 

*Equipment Failure 
 

 
 

Conductivity.  

Conductivity readings taken at each site show very little fluctuation with the 

exception of a noticeable drop on 8-October-07 (Figure 24).  Conductivity readings at 

Honey Creek varied from 492 μS/cm °C to 816 μS/cm °C (Table 4).  Readings from the 

Stillwater River remained quite steady only varying from 686 μS/cm °C to 785 μS/cm °C 

(Table 4).   
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Figure 24.  Conductivity Readings from the Study Sites during Embeddedness 

Chamber Exposures. 
 

 

 
 

Table 4.  Conductivity Readings from the Primary Embeddedness Chamber 
Exposure Periods. 

 

Date Site 
Cond 

(μS/cm °C)
10/1/2007 HY Cr 772 
10/3/2007 HY Cr 776 
10/5/2007 HY Cr 794 
10/8/2007 HY Cr 492 

10/15/2007 HY Cr 816 
10/1/2007 SR 686 
10/3/2007 SR 735 
10/5/2007 SR 772 
10/8/2007 SR 759 

10/12/2007 SR 745 
10/15/2007 SR 785 
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Substrate Characterization 
 

Embeddedness. 

The results from conducting percent embeddedness using the method described in 

a USGS publication (1998) indicate that both sites were experiencing relatively low 

embeddedness (31.5 % at Honey Creek; 27.2 % at Stillwater River) (Figure 25).  Percent 

embeddedness values for both sites fall in the range of what has been considered to be the 

normal operating range (<33-35 %) of a properly functioning stream (Bjorn et al., 1974, 

1977, Waters, 1995).   
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Figure 25.  Percent Embeddedness (USGS method) for Honey Creek and Stillwater 
River (31.5 & 27.2 respectively).  Honey Creek Measurements Taken on 22-

October-07.  Stillwater River Measurements Taken on 12-October-07. 
 

 *  ----------- Average stream % embeddedness
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Grain Size Fractional Analysis of Chamber Sediment. 

 Results from the embeddedness chamber processing indicate that the majority of 

the sediment that accumulated was in the size range of < 2 mm to > 63 µm (Figures 30 

and 31).  At day four the 63 µm – 250 µm fraction accounted for the majority (57%) of 

the sediment accumulating in the embeddedness chambers deployed at Honey Creek 

(Figure 26).  However, after day four there was a clear increasing trend over time in the 

250 µm – 2 mm size fraction (53% and 62% respectively) (Figure 27).   The Stillwater 

River results show the 250 µm – 2 mm size fraction clearly being the majority of the 

sediment accumulating over the 4, 7, and 14-day sampling points (87%, 82%, and 78% 

respectively) (Figures 28 and 29).  Results did indicate a decrease in dominance of the 

250 µm – 2 mm size fraction over time along with an increase in the 63 µm – 250 µm 

size fraction (Figure 31).  The > 2 mm size fraction was a relatively small percentage of 

the overall sediment accumulating at both sites and at all time points (Figures 30 and 31).  

The 1.2 µm - 63 µm size fraction remained relatively stable throughout the entire 

chamber exposure period (Figures 30 and 31).  Mean bulk porosity within the 

embeddedness chambers showed an overall trend of decreasing porosity from day 4 to 

day 14 at both sites (Figure 32).    
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Figure 26.  Percent of Total Dry Fraction of Chamber Sediment Accumulated for 
Honey Creek (4-Day). 
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Figure 27.  Percent of Total Dry Fraction of Chamber Sediment Accumulated for 
Honey Creek (7&14-Day). 
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Figure 28.  Percent of Total Dry Fraction of Chamber Sediment Accumulated for 

Stillwater River (4&7-Day). 

2%

87%

11%

0%

DF2 mm

DF250 μm

DF63 μm

DF1.2 μm

2%

82%

16%

0%

DF2 mm

DF250 μm

DF63 μm

DF1.2 μm

    44--DDaayy  

77--DDaayy  



 75

 
Figure 29.  Percent of Total Dry Fraction of Chamber Sediment Accumulated for 

Stillwater River (14-Day). 
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Figure 30.  Temporal Representation of Percent of Dry Fractions of Chamber 

Sediment Accumulated for Honey Creek. 
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Figure 31.  Temporal Representation of Percent of Dry Fractions of Chamber 
Sediment Accumulated for Stillwater River. 
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Figure 32.  Embeddedness Chamber Sediment Bulk Porosity over the Three Time 
Points. 
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Benthic Macroinvertebrate Characterization 
 

RBP Metrics.  

The benthic macroinvertebrate metrics derived from the RBP samples and the 

taxa information provide background information on each particular site for reference.  

Though this information was not used in the traditional reference data sense, it merely 

provided information on what benthic macroinvertebrates occupied that particular stretch 

of stream (Figure 33).  The intent of this research was not to assess the changes occurring 

within the reach compared to historical or reference data, but rather to assess the 

embeddedness chamber effectiveness in representing natural processes that are occurring 

within the stream.     
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Figure 33.  Honey Creek and Stillwater River Macroinvertebrate RBP Results 
Sampled on 28-September-07. 
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Table 5.  Taxa List for the Macroinvertebrate RBP at Honey Creek and Stillwater 

River Sites for 28-September-07. 
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Embeddedness Chamber Metrics. 

Metrics data from the embeddedness chamber samples was compared between the 

three sampling times (4, 7, & 14 days) and significance was determined by running a 

one-way ANOVA with Tukey’s Post Hoc test to determine if there were significant 

differences between the two sampling dates.  All total numbers data was LN transformed 

prior to running statistical analysis in order to help the data fit the assumption of a normal 

distribution.  All proportional data (% abundances) were transformed using an Arcsine 

Square Root transformation to meet the assumption of normal distribution.  Both sites 

exhibited a steady increasing trend over time in the total number of insects colonizing the 

chambers (Figure 37).  There was a significant difference in Number of Taxa (p = 0.012, 

increasing trend) between the 4-Day and 14-Day sampling events at Honey Creek (Figure 

35).  There was also a significant difference between the 4-Day and 7-Day samples in the 

number of Trichoptera taxa (p = 0.048, increasing trend) at Honey Creek (Figure 35).  

Significant differences between 4-Day and 14-Day sampling events were found in the 

following Stillwater River chamber metrics: % Trichoptera (p = 0.046) and % EPT taxa 

(p = 0.027) increased over time, and % Diptera (p = 0.024) decreased over time (Figure 

36).   

Regression analyses were run on the wide array of data from the embeddedness 

chambers.  The biotic metrics were run against abiotic factors such as total dry fraction of 

sediment, porosity, fractions of the dry sediment weight (2 mm, 250 µm, 63 µm, and 1.2 

µm total dry weights), % organic content of chamber sediments (LOI), and time.  

Regressions run on the data from both Honey Creek and the Stillwater River resulted in 
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numerous significant p-values and r2-values showing moderate correlations for most 

significant tests (Tables 6 and 7).  There were hypothesized correlations that were 

validated by the analyses such as a correlation between porosity and total dry fraction of 

chamber sediments (Stillwater R, Tot DF, p = 0.008, r2 = 46.9 %) showing a strong 

negative correlation (Table 7).  Correlations between sediment and porosity observed at 

the Stillwater River suggest that the smaller fractions may have the most influence on 

porosity (DF250, p = 0.014, r2 = 46.9 %; DF63, p = 0.042, r2 = 35.1 %) (Table 7).  Similar 

correlations between porosity and sediment with the Honey Creek chamber data also 

suggested the smaller fractions were more related to changes in porosity (Tot DF250, p = 

0.037, r2 = 43.7; DF1.2, p = 0.006, r2 = 30.5 %, negative correlation) (Table 6).   

The benthic metric data for Honey Creek showed a variety of significant p-values 

when run against the chamber sediment data (Table 6) yet most r2 values were relatively 

weak.  Significant correlations to note from the regression data are between the 1.2 µm 

dry fraction and the number of Chironomidae (p = 0.005, r2 = 32.0%) and the number of 

Hydropsychidae (p = 0.003, r2 = 34.7%) both exhibiting positive correlations (Table 6).  

The Stillwater River data showed a noticeable trend in significant correlations between 

benthic metrics and the 63 µm dry sediment fraction with 14 out of the 20 metrics 

exhibiting a significant correlation (Table 7).  
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Table 6.  Significant Observations from Regression Analysis between 
Embeddedness Chamber Biotic and Abiotic Parameters (Honey Creek). 

 

  Porosity Time DF 1.2 μm %Organic 
  p  r2 (%) *s p  r2 (%) s p  r2 (%) s p  r2 (%) s 
% of 
Ephemeroptera          0.009 28.5% - 
No. of Plecoptera 
taxa          0.006 30.5% - 
Total insects    0.000 54.1% +       
No. of EPT taxa    0.005 31.4% +       
No. Chironomidae    0.002 36.0% + 0.005 32.0% +    
No. Hydropsychidae    0.001 41.3% + 0.003 34.7% +    
DF 250 μm 0.037 43.7% -          

DF 1.2 μm 0.006 30.5% -                   

*s = slope             
 
 
 

Table 7.  Significant Observations from Regression Analysis between Chamber 
Biotic and Abiotic parameters (Stillwater River). 

 
  Porosity DF 63 µm 
  p r2 (%) *s p r2 (%) s 
Total insects    0.016 45.6 + 
No. of Taxa    0.001 65.6 + 
No. of Ephemeroptera taxa    0.010 50.4 + 
% of Ephemeroptera    0.017 45.2 + 
No. of Trichoptera taxa    0.023 41.8 + 
% Trichoptera    0.004 57.5 + 
No. of EPT taxa    0.001 68.2 + 
% of EPT    0.001 69.9 + 
% Chironomidae    0.001 65.6 - 
% grazers & scrapers   0.031 38.6 + 
% Shredders    0.011 49.0 + 
% dominant taxon    0.002 63.8 - 
Family Biotic Index    0.002 37.4 - 
No. Hydropsychidae    0.020 43.3 + 
       
Total DF 0.008 51.7 -    
DF 250 µm 0.014 46.9 -    
DF 63 µm 0.008 52.1 -    
%Organic 0.042 35.1 +       

 

        *s = slope 
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Figure 34.  Honey Creek and Stillwater River Macroinvertebrate Family Biotic 

Index from Embeddedness Chamber Exposure Periods (4,7, and 14-Day). 
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Figure 35.  Honey Creek Embeddedness Chamber Macroinvertebrate Metrics (4, 7, 
& 14-Day).  Single Letters (a, b, c) Indicate No Significant Difference; Double 

Letters (ba, cb, ca) Indicate Significant Difference. 
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Figure 36.  Stillwater River Embeddedness Chamber Macroinvertebrate Metrics (4, 
7, & 14-Day).  Single Letters (a, b, c) Indicate No Significant Difference; Double 

Letters (ba, cb, ca) Indicate Significant Difference. 
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Figure 37.  Mean Total Numbers of Embeddedness Chamber Colonizing Insects. 
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Table 8.  Taxa List for Honey Creek Embeddedness Chambers. 

 

Order/Family 

Functional 
Feeding 
Group 

Tolerance 
Value 

 4d 
Total

7d 
Total

14d 
Total 

Ephemeroptera      
Isonychiidae FC 2 1 1 2 
Heptageniidae SC 4  1 3 
Caenidae GC 7   1 
      
Odonata      
Coenagrionidae PR 6  1  
Calopterygidae PR 5  1  
      
Pleoptera      
Taeniopterygidae SH 2  1  
      
Trichoptera      
Philopotamidae  FC 3  1 1 
Polycentropodidae FC 6  2 2 
Hydropsychidae FC 4 10 25 21 
Limnephilidae SH 4 1   
Hydroptilidae SC 4  4  
Leptoceridae GC 4  1  
      
Coleoptera      
Elmidae GC 4  1  
      
Diptera      
Simulidae FC 6 1  1 
Chironomidae GC 6 12 27 93 
Tipulidae SH 3  2 2 
Emphididae PR 6 1 1  
Total Insecta #     26 69 126 
PR=predator      
GC=gather/collector     
FC=filterer/collector     
SC=scraper      
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Table 9.  Taxa List for Stillwater River Embeddedness Chambers. 
 

Order/Family 

Functional 
Feeding 
Group 

Tolerance 
Value 4day 7day 14day  

Ephemeroptera      
Isonychiidae FC 2 0 1 0 
Baetidae GC 4 2 0 1 
Heptageniidae SC 4 0 3 10 
Caenidae GC 7 4 20 36 
Potamanthidae GC 4 0 0 7 
Tricorythidae GC 4 0 17 32 
Siphlonuridae GC 7 0 0 1 
      
Odonata      
Coenagrionidae PR 6 0 0 1 
      
Pleoptera      
Perlodidae PR 2 2 2 8 
Taeniopterygidae SH 2 0 0 3 
      
Trichoptera      
Philopotamidae  FC 3 0 0 1 
Polycentropodidae FC 6 0 1 2 
Hydropsychidae FC 4 3 10 49 
Hydroptilidae SC 4 0 6 1 
Glossosomatidae SC 0 1 0 2 
      
Lepidoptera      
Crambidae   0 0 1 
      
Coleoptera      
Elmidae GC 4 0 0 1 
      
Diptera      
Simulidae FC 6 2 0 0 
Chironomidae GC 6 54 54 77 
Total Insecta #     68 114 233 
PR=predator      
GC=gather/collector     
FC=filterer/collector     
SC=scraper      
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Treatment Area Metrics. 

Treatment area sampling design facilitated two replicates per treatment area 

(Undisturbed, Slightly Disturbed, and Disturbed) per sampling time. Metric data was 

compared between the two sampling times (4 & 14 days) and significance was 

determined by running a one-way ANOVA with Tukey’s Post Hoc test to determine if 

there were significant differences between the two sampling dates.  All total numbers 

data was LN transformed prior to running statistical analysis in order to help the data fit 

the assumption of a normal distribution.  All proportional data (% abundances) were 

transformed using an Arcsine Square Root transformation to meet the normal distribution 

assumption.   

It was hypothesized that there would be significant differences between treatment 

areas during each sampling period and significant differences between treatment areas 

and each sampling period.  The macroinvertebrate metrics from the Honey Creek site 

treatment area samples showed some significant differences but no significant differences 

were seen in the metrics from the Stillwater River site.  Significant differences in the 

number of EPT taxa were found between all three of the Honey Creek treatment areas for 

Day 14 (p = 0.021) with the Disturbed site exhibiting the larger number of EPT taxa 

(Figures 38, 41, and 42).  There was a significant difference (p = 0.029) in % 

Chironomidae between the Disturbed treatment area and the Undisturbed treatment area 

at the Honey Creek site for Day 14 with the Disturbed treatment area exhibiting a higher 

percentage (Figures 38 and 42).  The number of Ephemeroptera taxa at Honey Creek 

showed a significant difference (p = 0.047) (Figure 38 and 42) and though Tukey’s pair-

wise comparison did not indicate significance between the Undisturbed and Disturbed 
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treatment areas at Day 14, review the statistical program output of the confidence 

intervals suggest so.  Though not significant (p = 0.098) there was a possible trend 

noticed for % Predators at the Honey Creek site. 

Two-sample t-tests were run to determine any significant differences between a 

particular treatment area and the two sampling dates (i.e. Undisturbed Day 4 vs. 

Undisturbed Day 14).   The only significant differences (increasing trends) between the 

two sampling dates were in the Slightly Disturbed treatment area at Honey Creek for % 

Diptera (p = 0.047)  (Figure 41) and the Family Biotic Index (p = 0.05) (Figure 40).  

There were several metrics that exhibited possible trends at the Honey Creek site even 

though the p-values were >0.05.  In the slightly disturbed treatment area at Honey Creek 

possible differences existed in % Chironomidae (p = 0.092, increasing trend), % 

Plecoptera (p = 0.066, decreasing trend), % Shredders (p = 0.066, decreasing trend), and 

% Dominant Taxon (p = 0.088, increasing trend) (Figure 41).  Possible differences in the 

Slightly Disturbed area at the Stillwater River site were also noted in % Ephemeroptera 

(p = 0.095, increasing trend) and % Dominant Taxon (p = 0.055, decreasing trend) 

(Figure 44).  Two other metrics at the Honey Creek site also showed possible differences, 

% Diptera in the Undisturbed area (p = 0.076, decreasing trend)  (Figure 38) and % 

Ephemeroptera in the Disturbed area (p = 0.072, increasing trend) (Figure 42).    
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Figure 38.  Honey Creek Undisturbed Treatment Area Metrics (4 & 14-Day). 
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Figure 39.  Undisturbed Treatment Area Family Biotic Index Metric (4 & 14-Day) 
for both Sampling Sites. 
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Figure 40.  Slightly Disturbed Treatment Area Family Biotic Index Metric (4 & 14-
Day) for both Sampling Sites. 
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Figure 41.  Honey Creek Slightly Disturbed Treatment Area Metrics (4 & 14-Day). 
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Figure 42.  Honey Creek Disturbed Treatment Area Metrics (4 & 14-Day). 
 

0.
0

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

90
.0

10
0.

0 No. o
f T

ax
a

No. o
f E

phe
meropte

ra 
tax

a

% of
 Ephem

eropte
ra

No. o
f T

ric
hop

ter
a ta

xa % Tric
hop

ter
a

No. o
f P

leco
pter

a t
ax

a % Plec
opte

ra
No. o

f E
PT ta

xa
% of

 EPT

No. o
f D

ipt
eran t

ax
a % D

iptera
% C

hir
ono

midae
% fil

ter
s

% gr
az

ers 
an

d s
cra

pers % Shredd
ers % Pred

ato
rs

% do
minan

t ta
xo

n

M
et

ric
s

Percentage/Total Numbers

Di
st

ur
be

d 
4-

Da
y

Di
st

ur
be

d 
14

-D
ay



 98

 

 
Figure 43.  Stillwater River Undisturbed Treatment Area Metrics (4 & 14-Day). 

 

0.
0

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

90
.0

10
0.

0

No. 
of 

Tax
a 

No. 
of 

Eph
em

ero
pte

ra 
tax

a

% of
 Eph

em
ero

pte
ra

No. 
of 

Tric
ho

pte
ra 

tax
a

% Tric
ho

pte
ra

No. 
of 

Plec
op

ter
a t

ax
a % Plec

op
ter

a
No. 

of 
EPT ta

xa
% of

 EPT

No. 
of 

Dipt
era

n t
ax

a % D
ipt

era
% C

hir
on

om
ida

e
% fil

ter
s

% gr
az

ers
 an

d s
cra

pe
rs % Shre

dd
ers % Pred

ato
rs

% do
mina

nt 
tax

on

M
et

ric
s

Percentage/Total Numbers

U
nd

ist
ur

be
d 

4-
D

ay
U

nd
is

tu
rb

ed
 1

4-
D

ay



 99

 

 
Figure 44.  Stillwater River Slightly Disturbed Treatment Area Metrics (4 & 14-

Day). 
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Figure 45.  Stillwater River Disturbed Treatment Area Metrics (4 & 14-Day). 
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Figure 46.  Disturbed Treatment Area Family Biotic Index Metric (4 & 14-Day) for 

both sampling sites. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 102

V. Discussion 
 
 

Pilot Study 
 
 
 The initial embeddedness chamber exposure on the Mad River during the pilot 

study validated the design of the embeddedness chamber showing that it was capable of 

accumulating sediment bound for the interstices of the stream substrate.  Though not 

originally intended for use as a benthic macroinvertebrate colonization tool, observations 

from the processed chambers indicated that the resident fauna were rapidly taking 

advantage of the clean substrate (marbles).   This size of the mesh covering the chambers 

was changed from 1 mm openings to 4 mm openings in large part due to this observation.  

Though a detailed identification of the colonizing macroinvertebrates was not undertaken 

cursory observations indicated that the major taxa where from the orders Trichoptera and 

Diptera (Chironomidae), both of which have taxa that are relatively tolerant to 

perturbation.  The rapid accumulation of sediment within the embeddedness chambers 

during this pilot study also influenced the decision to run the primary chamber study at 

relatively short exposures to capture what is occurring during the initial stages of 

embeddedness.  Sediment dry weight data from the pilot study was initially intended to 

determine the how many replicates would be needed to detect differences in 

accumulating sediment between sites.  Revision of the overall study design included a 

shift in focus from between sites within a stream to differences over time at one site.  The 

power analysis results were still valid in determining how many replicates would be 

needed to detect differences between different sampling times at the desired α-level. 
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Embeddedness Chamber Optimization  

 
The embeddedness chamber design that was modified from the pilot study 

demonstrated that it was capable of capturing both accumulating sediment within the 

substrate and colonizing macroinvertebrates.  Improvements in design such as the larger 

mesh size and end cap holes provided attributes that were more representative of the 

natural substrate.  Observations of several net spinning caddis fly larvae cases inside the 

chambers and adjacent to the end cap holes during processing indicates that the chamber 

design seemed to provide adequate subsurface water flow.  The chambers held up quite 

well during the 14-Day exposure but the design is yet to be tested over longer durations 

and during high flow conditions.  The in situ tray design worked as intended; keeping the 

embeddedness chambers securely in place during the exposure.  The system used to 

secure the chambers to the in situ tray was also effective in facilitating removal of single 

chambers at selected times without disturbing adjacent chambers.  Like the 

embeddedness chambers, the in situ tray design for this experiment has yet to be tested 

over long exposures and during high flow events.  Embeddedness chamber deployment 

and retrieval covers appeared to work in minimizing sediment loss but further validation 

through a small scale test in the field would confirm their effectiveness.  The glass 

marbles serving as artificial substrate were easily cleaned of any visible organic and 

inorganic matter during chamber processes yet longer field exposures may see a 

noticeable biofilm develop on the surface of the marbles which would affect the 

dynamics of the imposed habitat (i.e. food availability, adsorption of colloidal material).      
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Sediment Quality Testing 

 Results from the ten day sediment toxicity test indicate no apparent toxicity 

within the site sediments.  The diversity of the macroinvertebrate community; as seen in 

the RBP samples, chamber colonization, and treatment area samples is indicative of the 

quality of the substrate at the study sites (Honey Creek and Stillwater River).  Further 

studies at these sites would require no additional chemical toxicity endpoints to infer that 

site substrate toxicity was influencing macroinvertebrate colonization of the 

embeddedness chambers. DGT results for the 24 h exposure periods at each site were 

inconclusive indicate flux of Cu and Zn at levels higher than Cd, Ni, and Pb.  Cu fluxes 

appear to have been greater in the more disturbed treatment areas at Honey Creek (Figure 

17) and greater in the less disturbed treatment areas at the Stillwater River site (Figure 

18).  Zinc fluxes at both sites were higher than all of the other metals analyzed (Figures 

17 and 18) but show a varied response to the treatment areas at each site.  Unfortunately 

the blanks indicate high levels of Cu and Zn which point towards possible cross-

contamination having occurred during the laboratory analysis.  With the contamination 

possibility in mind, results from the areas must weighted carefully.   

 
 

Physicochemical Water Quality Parameters 
 

 All of the parameters sampled were intended to provide a better picture of some 

of the major variables involved with sediment movement and macroinvertebrate 

colonization.  When viewed with a weight of evidence approach each piece can help to 

confirm conclusions made from both the sediment and macroinvertebrate data.  Results 
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from the stream flow measurements taken on selected dates as well as the USGS gage 

data suggest that stream flow fluctuations were minimal during the primary chamber 

exposures (Figure 20).  This is important in order to determine what is occurring at base 

flow conditions with depositing sediment (and subsequent embedding sediment).  Large 

variations in flow would only serve to confound observations made during this initial 

analysis of the in situ embeddedness method.  This fact holds true for both TSS and 

turbidity as well, both of which can be used as an indicator of possible sediment and 

nutrient load within a system.  The TSS results indicate small fluctuations in suspended 

solids concentration (Figure 22) but it would be useful in further studies to include more 

frequent samples over an exposure period.  Turbidity readings as well as Conductivity 

readings from the selected sampling times indicate that there was minimal fluctuation 

over the embeddedness chamber exposure periods.  However, continuous readings 

provided by a data Sonde deployed during the duration of an exposure would be more 

useful in assessing stream conditions.  

 

 

Substrate Characterization 
 

Embeddedness. 

Percent embeddedness measurements from each site indicate that these stretches 

of streams were not experiencing excessive stress due to substrate embeddedness.  

Results for both sites are below what has been considered to be the normal range for low 

to moderate gradient systems such Honey Creek and the Stillwater River (~33-35%) 
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(Figure 25).  The presence of sediment in lotic systems in a natural phenomenon and 

some level of substrate embeddedness is inevitable in a lower gradient system that is not 

experience excessive sediment inputs.  Bed load movement of substrate is also a natural 

phenomenon and its magnitude is determined largely in part to discharge.  When stream 

discharge reaches a critical value of stability for a given systems, the relatively stable 

layer of embedded substrate (armour layer) will begin to break up and the embedded fine 

particulates will be flushed downstream (Schälchli, 1992).  The flushing of embedded 

fine sediment is dependent on higher flow events that in most natural systems occur as a 

result of precipitation or snow melt events.  In the absence of frequent higher discharges, 

a system experiencing excessive sediment inputs will likely exhibit a higher percent 

embeddedness of the substrate.  

 

Grain Size Fractional Analysis of Chamber Sediment. 

 Embeddedness chamber sediment results indicate that the sand and silt (250 µm - 

2 mm and 63 µm - 250 µm respectively) fractions were the dominant particles that were 

embedding within the chambers (Figures 30 and 31).  The term embedding is used 

loosely here because the sediment within the chambers continued to increase steadily 

over the 14 days of exposures.  The steady increase in sediment (Total Dry Fraction) at 

both sites indicates that the chambers had yet to reach a dynamic equilibrium with the 

surrounding substrate (Figures 30 and 31).  These sediment results compared to the 

colonization data suggest that the significant differences (both in sediment and 

macroinvertebrate data) over time may be the result of a clean substrate moving towards 

conditions existing in the surrounding substrate.  Longer embeddedness chamber 
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exposure times are necessary to better examine the physical processes that are occurring 

with the sediment within the chambers.  It is expected that the embeddedness chambers 

would continue to accumulate sediment over longer exposure times and would eventual 

exhibit an asymptotical response as the chambers reached equilibrium for the particular 

system.   

 Porosity data indicated a clear trend in decreasing porosity from Day-4 to Day-14 

at both Honey Creek and the Stillwater River (Figure 32).  Regression analysis revealed  

negative correlations between porosity and the total dry fraction, the 1.2 µm - 63 µm dry 

fraction and the 250 µm - 2 mm dry fraction of chamber sediments at the Honey Creek 

site (Table 6).  Regression analysis revealed correlations between porosity and the total 

dry fraction, 63 µm - 250 µm dry fraction, the 250 µm - 2 mm dry fraction, and % 

Organic content of chamber sediments at the Stillwater River site (Table 7).  All of these 

data suggest that the embeddedness chamber design and subsequent sample and data 

processing is able to capture the well supported phenomenon of decreasing substrate 

porosity with increasing fine sediment.       

 
 

Benthic Macroinvertebrate Characterization 
  

RBP Metrics. 

 The macroinvertebrate RBP results show both sites experiencing high values of 

the following metrics: % Trichoptera, % EPT taxa, % Filterers, and % Dominant taxa 

(Figure 33).  These results indicate that the bulk of the macroinvertebrate assemblage 

(insects only) is comprised of mainly taxa that have a moderate pollution tolerance.  RBP 
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results from Honey Creek indicate that Trichoptera taxa are the primary contributors to 

the % EPT taxa metric (the majority being Hydropsychidae) (Table 5).  Contrary to 

Honey Creek, the Stillwater River metric results indicate that Ephemeroptera taxa were 

the primary contributors to % EPT taxa (the majority being Heptageniidae and 

Tricorythidae) (Table 5).  Both dominant families of Ephemeroptera taxa (Heptageniidae 

and Tricorythidae) have moderate pollution tolerance values (4).    RBP results from both 

sites provided a background list of macroinvertebrates that could be expected to colonize 

the embeddedness chambers during an exposure.     

 

  

Embeddedness Chamber Metrics. 

Macroinvertebrate metric analyses results indicate significant differences in the 

number of total taxa, the number of Trichoptera taxa, and the number of EPT taxa 

between day 4 and day 14.  Analyses revealed that the significant differences and 

correlations between particular metrics and time at Honey Creek (No. of Trichoptera, No. 

of EPT taxa) (Table 6) suggest that the chambers are representing actions of taxa that are 

known early colonizers and opportunists.  This information validates that the 

embeddedness chambers are effective in representing what naturally occurs in many 

systems.   

Results from the statistical analysis of embeddedness chamber macroinvertebrate 

colonization data from the Stillwater River site indicate significant correlations between 

the majority of metrics and the 63 µm – 250 µm fraction of the chamber sediments.  This 

is interesting because the 250 µm – 2 mm size fraction is the dominant proportion of the 
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total sediment for all three sampling points at this site (Figures 31).  Had the dominant 

fraction been the 63 µm – 250 µm size, then it would have been easy to suggest that the 

correlations between the metrics and the particular sediment size were occurring mainly 

due to proportionality.  Further investigations are warranted to identify these interesting 

correlations.  Analyses revealed that metrics responding to the 63 µm – 250 µm fraction 

(% Trichoptera, No. of EPT taxa, % EPT, % Chironomidae, and % Dominant Taxon) 

(Table 7) consisted of taxa that are known early colonizers and opportunists.  This 

information also validates that the embeddedness chambers are effective in representing 

what naturally occurs in many systems, as was seen with the Honey Creek data.   

  

Treatment Area Metrics. 

 Results from analyses of the treatment area metrics indicate very few significant 

differences compared to the embeddedness chamber results.  ANOVA results from the 

Honey Creek treatment areas reveal significant differences between the number of EPT 

taxa on Day-14 between all of the treatment areas (Figures 38, 41 and 42). Also noted 

were significant differences in % Chironomidae between the disturbed and undisturbed 

treatment areas on day 14 (Figures 38 and 42).  T-test analysis between treatments and 

sampling times revealed significant differences between the slightly disturbed treatment 

areas and % Diptera and the FBI values for both 4-Day and 14-Day samples (Figures 42 

and 40).  No significant relationships were discovered for the Stillwater River data.  All 

of the results for the treatment areas suggest that there needs to be more time elapsing 

between disturbances in order to detect noticeable differences in macroinvertebrate 

response to various levels of disturbance.   
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Conclusion 

 The acceptance of excessive sediment inputs in lotic systems as a major stressor 

has been well documented and numerous papers have been devoted to the effect of 

sediment on aquatic macroinvertebrates as well as the effect of embeddedness and 

colmation on hyporheic exchange processes.  Physical and ecological assessment of 

aquatic systems requires an assortment of tools and techniques for use in a weight of 

evidence approach.  In situ methods are becoming more established as viable means of 

assessing what is actually occurring in the system of concern because the methods allow 

for assessment of the effects of multiple exposures.  Embeddedness quantification 

techniques have undergone much scrutiny and the subjective nature of many techniques 

has led to the decrease in the perceived importance of percent embeddedness as an 

endpoint in habitat assessments.  It can be assumed that the creation of a more 

quantitative means of expressing embeddedness and linking its effect on biota would be 

well accepted in the environmental assessment field.   

 Results from this research suggest that the in situ embeddedness chamber as a 

means of linking embeddedness and macroinvertebrate health holds much promise.  

Further research into how well the embeddedness chamber reflects base-line in situ 

conditions may provide more and stronger evidence of significant correlations.  

Examination of chamber dynamics under various base-flow conditions including 

different habitats (i.e. riffles) and during different seasons will provide insight into 

significant relationships between embeddedness and biotic responses.  Evaluating 

chamber dynamics during different flow regimes may also provide useful information in 

the calibration and validation of the embeddedness chamber as an effective tool in 
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assessing embeddedness of a system.  Inclusion of non-insect taxa into the analysis may 

provide additional significance needed to validate assumptions.  Though this study 

evaluated relatively short colonization times, results suggest that there are some 

significant correlations present.  Additional research evaluating longer colonization and 

embedding times could reveal an expected asymptotical response of colonization and 

accumulated sediment within the artificial substrate over time.  Strengthening the linkage 

between the current percent embeddedness quantification and this experimental approach 

is needed to further determine important relationships.  A possible benefit of this in situ 

embeddedness methodology is a means of assessing the abiotic and biotic effects of a 

multi sediment-related stressor exposure.  Additional chambers during an exposure could 

be devoted to assessing pollutant and nutrient loads associated with depositing sediment 

within the chambers.  The ultimate goal of developing an in situ embeddedness 

quantification method is a sound, well-tested system that can be standardized for use in 

many situations.  The path to standardization of such a method would require testing and 

calibration in many different eco-regions under a variety of situations examining a 

multitude of variables. 
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Appendix 
 

 
Figure 47.  Photograph of the Honey Creek Study Site 

 

 
 

Figure 48.  Photograph of the Stillwater River Study. 
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Table 10.  Pilot Study Embeddedness Chamber Raw Sediment Data 
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Table 11.  Sediment Toxicity Test Raw Data 

 

Treatment Replicate 
Org 
Survival %Survival   Control   

Control  1 9 90.00  Mean 97.50 
Control  2 10 100.00  Std Dev 5.00 
Control  3 10 100.00    

Control  4 10 100.00  
Honey 
Creek  

Honey Cr. 1 9 90.00  Mean 87.50 
Honey Cr. 2 8 80.00  Std Dev 9.57 
Honey Cr. 3 8 80.00    

Honey Cr. 4 10 100.00  
Stillwater 
R.  

Stillwater R. 1 7 70.00  Mean 90.00 
Stillwater R. 2 10 100.00  Std Dev 14.14 
Stillwater R. 3 10 100.00    
Stillwater R. 4 9 90.00    
       
       
2-Sample t-test      
HY & 
Control p=0.138      
SR & 
Control p=0.391      
       
Kolomogrov-Smirnov Normality     
HY & 
Control p>0.15      
SR & 
Control p>0.15      
       
Lenene's Equal Variance Test     
HY & 
Control p=0.207      
SR & 
Control p=0.228           
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Table 12.  Sediment Toxicity Test Water Quality Data 
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Table 13.  DGT Flux Calculations Raw Data 
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Table 14.  DGT Mean Flux Data 

 
Honey 
Creek Undist S.Dist Dist Blank 
Cd 4.741E-04 1.208E-04 1.208E-04 0.000E+00 
Cu 2.236E-02 2.728E-02 2.952E-02 6.708E-03 
Ni 9.571E-03 1.047E-02 5.322E-03 0.000E+00 
Pb 6.529E-03 6.082E-03 6.395E-03 6.261E-04 
Zn 6.038E-02 6.708E-02 7.200E-02 3.220E-02 
     
     
     
Stillwater 
R. Undist S.Dist Dist Blank 
Cd 1.342E-04 1.610E-04 0.000E+00 0.000E+00 
Cu 4.875E-02 2.818E-02 3.041E-02 6.708E-03 
Ni 9.079E-03 1.096E-02 6.664E-03 0.000E+00 
Pb 4.159E-03 3.131E-03 2.191E-03 6.261E-04 
Zn 7.782E-02 1.006E-01 7.156E-02 3.220E-02 
     
* Metal Flux to DGTs per day (μg/cm2-s)   

 
 
 

 
Table 15.  Site Water Quality Raw Data 
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Table 16.  Honey Creek Embeddedness Raw Data. 
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Table 17.  Stillwater River Embeddedness Raw Data. 
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Table 18.  Embeddedness Chamber Sediment Raw Data 
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Table 19.  Embeddedness Chamber Benthos Raw Data (untransformed). 
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Table 20.  Embeddedness Chamber Benthos Raw Data (transformed). 
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Table 21.  Treatment Area Metric Raw Data (untransformed). 
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Table 22.  Treatment Area Metric Raw Data (transformed). 
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